| 研究生: |
蘇心敏 Su, Hsin-Min |
|---|---|
| 論文名稱: |
常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性 Cu(Ⅱ) Removal Using Modifide Polypropylene Fiber Grafted with Thiourea by a Low Temperature Plasma |
| 指導教授: |
張祖恩
Chang, Juu-En |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2006 |
| 畢業學年度: | 94 |
| 語文別: | 中文 |
| 論文頁數: | 95 |
| 中文關鍵詞: | 常溫電漿 、聚丙烯纖維 、接枝 、硫脲 、丙烯酸 、去除 |
| 外文關鍵詞: | metal removal, low temperature plasma, polypropylene fiber, grafting |
| 相關次數: | 點閱:164 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究利用常溫電漿活化聚丙烯纖維表面,經由兩種接枝方式將不同單體接枝於聚丙烯纖維表面。其一是電漿活化纖維表面後直接接枝硫脲(Thiourea)單體,改變硫脲濃度、接枝溫度;另一接枝方法為電漿活化纖維表面後,先接枝丙烯酸(Acrylic Acid)單體後再接枝硫脲單體改變硫脲濃度、NaOH濃度、接枝溫度,探討其去除溶液中銅離子之可行性,並以XPS分析其表面官能基之變化。
經由水分散失率及過氧化基量量測結果,Ar、N2、O2電漿均選擇電漿功率1000W、氣體壓力200mtorr、改質時間30秒之操作參數對聚丙烯纖維表面進行活化。由銅離子去除率結果顯示,電漿活化聚丙烯纖維表面接枝硫脲單體,硫脲濃度分別為0.1M、0.5M、1M,反應溫度為3°C、25°C、60°C,當銅離子初始濃度為40mg/L時去除率約為1.28%~5.67%。當聚丙烯纖維經電漿改質表面後接枝丙烯酸單體後最高去除率為22.50%。接枝丙烯酸單體與NaOH溶液反應後去除銅離子,由於離子交換能力增加因此提高銅離子去除效率。聚丙烯纖維經電漿改質表面後依序接枝丙烯酸單體與硫脲溶液,銅離子去除率可達64.53%。經由XPS表面分析之後,可以分析出接枝硫脲與丙烯酸單體後鍵結的改變,證實各單體接枝成功。由上述結果可知,聚丙烯纖維經電漿活化接枝不同單體,可成為一具有去除水中重金屬功能之濾材。
In this research, the low temperature plasma in conjunction with two types of monomers and various grafting operations was applied to activate the surface of polypropylene (PP) fiber for functional structures. For the PP fiber, the activation was optimized with the Ar, N2, and O2 plasmas at a condition of 1000 W of power, 200 mtorr of air pressure, and 30 sec of reaction time. In one of the grafting experiments (the first approach), the Thiourea monomer was directly grafted onto the surface of PP fiber after the plasma activation at various Thiourea concentrations and different grafting temperatures. In the other grafting experiment (the second approach), the activated PP fiber was grafted with acrylic acid (AAc), followed by the Thiourea monomer grafting procedure. Both products were used for copper ion removal experiments, and the surface analysis of these PP fabrics analyzed with X-ray photoelectron spectroscopy (XPS) demonstrated the presence and the function of grafted materials.
Results of copper removal experiments showed that the removal efficiencies range from 1.28 ~ 5.67% when the Thiourea concentrations were 0.1M, 0.5M and 1M at the reaction temperature of 3°C, 25°C, and 60°C in the first approach experiments. On the other hand, the copper removal efficiency increased to 64.53 % when the grafting procedure fellowed the AAc and Thiourea monomer grafting sequence in the second approach experiment. Results of XPS analyses showed the structure changes of the PP fiber and confirmed the monomer grafting. It was concluded that the PP fiber surface could be grafted with different monomers after plasma activation and the modified products could be potential adsorption materials for heavy metal removal in wastewater treatments.
Aly, A.S., Jeon, B.D., and Park, Y.H., 1997. Preparation and evaluation of the chitin derivatives for wastewater treatments. Journal of Applied Polymer Science 65(10), 1939-1946.
Celik, M. and Sacak, M., 1996. Grafting of acrylamide-methacrylic acid mixture onto poly(ethylene terephthalate) fibers by azobisisobutyronitrile. Journal of Applied Polymer Science 59(4), 609-617.
Chen, J., Nho, Y.C., and Park, J.S., 1998. Grafting polymerization of acrylic acid onto preirradiated polypropylene fabric. Radiation Physics and Chemistry 52(1-6), 201-206.
Chen-Yang, Y.W., Liao, J.D., Kau, J.Y., Huang, J., Chang, W.T., and Chen, C.W., 2000. Surface modifications of expanded poly(tetrafluoroethylene) sheets assisted by CO2 antenna coupling microwave plasma. Macromolecules 33(15), 5638-5643.
Chirila, V., Marginean, G., and Brandl, W., 2005. Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties. Surface & Coatings Technology 200(1-4), 548-551.
Choi, H.S., Kim, Y.S., Zhang, Y., Tang, S., Myung, S.W., and Shin, B.C., 2004. Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface. Surface & Coatings Technology 182(1), 55-64.
Choi, S.H., Lee, K.P., Lee, J.G., and Nho, Y.C., 2000. Graft copolymer-metal complexes obtained by radiation grafting on polyethylene film. Journal of Applied Polymer Science 77(3), 500-508.
Dogue, I.L.J., Forch, R., and Mermilliod, N., 1995. Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. Journal Of Adhesion Science And Technology 9(12), 1531-1545.
Gherrou, A., Kerdjoudj, H., Molinari, R., and Drioli, E., 2002. Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Separation And Purification Technology 28(3), 235-244.
Gupta, B., Plummer, C., Bisson, I., Frey, P., and Hilborn, J., 2002. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3), 863-871.
Karakisla, M., 2003. The adsorption of Cu(II) ion from aqueous solution upon acrylic acid grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science 87(8), 1216-1220.
Khalil, M.I. and Abdel-Halim, M.G., 2000. Preparation of some starch-based neutral chelating agents. Carbohydrate Research 324(3), 189-199.
Lee, S.D., Hsiue, G.H., and Kao, C.Y., 1996. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. Journal Of Polymer Science Part A-Polymer Chemistry 34(1), 141-148.
Liu, K.Z., Suzuki, Y., and Fukuda, Y., 2004. Surface analysis of (NH2)(2)CS-treated GaP(001) by AES and XPS. Surface and Interface Analysis 36(8), 966-968.
Nagatsu, M., Terashita, F., and Koide, Y., 2003. Low-temperature sterilization with surface-wave-excited oxygen plasma. Japanese Journal Of Applied Physics Part 2-Letters 42(7B), L856-L859.
Nezu, A., Morishima, T., and Watanabe, T., 2003. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films 435(1-2), 335-339.
Nho, Y.C., Chen, J., and Jin, J.H., 1999. Grafting polymerization of styrene onto preirradiated polypropylene fabric. Radiation Physics and Chemistry 54(3), 317-322.
Ruiz, M., Sastre, A., and Guibal, E., 2002. Pd and Pt recovery using chitosan gel beads. II. Influence of chemical modifications on sorption properties. Separation Science and Technology 37(10), 2385-2403.
Senna, M.M., Siyam, T., and Mahdy, S., 2004. Physico-chemical studies on Cu(II) complexes of acrylate chelating polymers. Journal Of Macromolecular Science-Pure And Applied Chemistry A41(10), 1187-1203.
Somanathan, N., Balasubramaniam, B., and Subramaniam, V., 1995. Grafting Of Polyester Fibers. Journal Of Macromolecular Science-Pure And Applied Chemistry A32(5), 1025-1036.
Svorcik, V., Kolarova, K., Slepicka, P., Mackova, A., Novotna, M., and Hnatowicz, V., 2006. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability 91(6), 1219-1225.
Tsuchida, K. and Bell, J.P., 2001. New epoxy/episulfide resin system for electronic applications. I. Curing mechanism and properties. Journal of Applied Polymer Science 79(8), 1359-1370.
Vallon, S., Hofrichter, A., Drevillon, B., KlembergSapieha, J.E., Martinu, L., and PoncinEpaillard, F., 1996. Improvement of the adhesion of silica layers to polypropylene induced by nitrogen plasma treatment. Thin Solid Films 291(68-73.
Wade, G.A. and Cantwell, W.J., 2000. Adhesive bonding and wettability of plasma treated, glass fiber-reinforced nylon-6,6 composites. Journal of Materials Science Letters 19(20), 1829-1832.
Yan, C.L. and Lu, D.N., 2006. Surface energy and wettability of plasma-treated polyacrylonitrile fibers. Plasma Chemistry And Plasma Processing 26(2), 119-126.
Yang, J.M., Lin, H.T., Wu, T.H., and Chen, C.C., 2003. Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. Journal of Applied Polymer Science 90(5), 1331-1336.
Zhang, H.G., Ritchie, I.M., and La Brooy, S.R., 2004. The adsorption of gold thiourea complex onto activated carbon. Hydrometallurgy 72(3-4), 291-301.
Zhou, D., Zhang, L., and Guo, S.L., 2005. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research 39(16), 3755-3762.
高正雄,「超 LSI 時代 :電漿化學」,復漢,1984。
游振宗,「纖維高分子化學」,超級科技,1989。
張益國,「黃酸鹽程序去除銅離子及其生成物之穩定性」,國立成功大學環境工程研究所博士論文,台灣台南,2003。
陳滄欽,「澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2004。