簡易檢索 / 詳目顯示

研究生: 蘇心敏
Su, Hsin-Min
論文名稱: 常溫電漿改質聚丙烯纖維接枝硫脲去除銅離子之可行性
Cu(Ⅱ) Removal Using Modifide Polypropylene Fiber Grafted with Thiourea by a Low Temperature Plasma
指導教授: 張祖恩
Chang, Juu-En
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程學系
Department of Environmental Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 95
中文關鍵詞: 常溫電漿聚丙烯纖維接枝硫脲丙烯酸去除
外文關鍵詞: metal removal, low temperature plasma, polypropylene fiber, grafting
相關次數: 點閱:164下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常溫電漿活化聚丙烯纖維表面,經由兩種接枝方式將不同單體接枝於聚丙烯纖維表面。其一是電漿活化纖維表面後直接接枝硫脲(Thiourea)單體,改變硫脲濃度、接枝溫度;另一接枝方法為電漿活化纖維表面後,先接枝丙烯酸(Acrylic Acid)單體後再接枝硫脲單體改變硫脲濃度、NaOH濃度、接枝溫度,探討其去除溶液中銅離子之可行性,並以XPS分析其表面官能基之變化。
    經由水分散失率及過氧化基量量測結果,Ar、N2、O2電漿均選擇電漿功率1000W、氣體壓力200mtorr、改質時間30秒之操作參數對聚丙烯纖維表面進行活化。由銅離子去除率結果顯示,電漿活化聚丙烯纖維表面接枝硫脲單體,硫脲濃度分別為0.1M、0.5M、1M,反應溫度為3°C、25°C、60°C,當銅離子初始濃度為40mg/L時去除率約為1.28%~5.67%。當聚丙烯纖維經電漿改質表面後接枝丙烯酸單體後最高去除率為22.50%。接枝丙烯酸單體與NaOH溶液反應後去除銅離子,由於離子交換能力增加因此提高銅離子去除效率。聚丙烯纖維經電漿改質表面後依序接枝丙烯酸單體與硫脲溶液,銅離子去除率可達64.53%。經由XPS表面分析之後,可以分析出接枝硫脲與丙烯酸單體後鍵結的改變,證實各單體接枝成功。由上述結果可知,聚丙烯纖維經電漿活化接枝不同單體,可成為一具有去除水中重金屬功能之濾材。

    In this research, the low temperature plasma in conjunction with two types of monomers and various grafting operations was applied to activate the surface of polypropylene (PP) fiber for functional structures. For the PP fiber, the activation was optimized with the Ar, N2, and O2 plasmas at a condition of 1000 W of power, 200 mtorr of air pressure, and 30 sec of reaction time. In one of the grafting experiments (the first approach), the Thiourea monomer was directly grafted onto the surface of PP fiber after the plasma activation at various Thiourea concentrations and different grafting temperatures. In the other grafting experiment (the second approach), the activated PP fiber was grafted with acrylic acid (AAc), followed by the Thiourea monomer grafting procedure. Both products were used for copper ion removal experiments, and the surface analysis of these PP fabrics analyzed with X-ray photoelectron spectroscopy (XPS) demonstrated the presence and the function of grafted materials.
    Results of copper removal experiments showed that the removal efficiencies range from 1.28 ~ 5.67% when the Thiourea concentrations were 0.1M, 0.5M and 1M at the reaction temperature of 3°C, 25°C, and 60°C in the first approach experiments. On the other hand, the copper removal efficiency increased to 64.53 % when the grafting procedure fellowed the AAc and Thiourea monomer grafting sequence in the second approach experiment. Results of XPS analyses showed the structure changes of the PP fiber and confirmed the monomer grafting. It was concluded that the PP fiber surface could be grafted with different monomers after plasma activation and the modified products could be potential adsorption materials for heavy metal removal in wastewater treatments.

    中文摘要 Ι 總目錄 V 表目錄 Ⅷ 圖目錄 Ⅸ 第一章 前言 1 1-1 研究動機與目的 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1 重金屬廢水處理現況 3 2-2 電漿原理與應用 5 2-2-1 電漿原理 5 2-2-2 電漿應用 7 2-2-3 低溫電漿表面改質技術 9 2-3 聚丙烯高分子材料 14 2-3-1 聚丙烯纖維基本特性 15 2-3-2 聚丙烯纖維之應用 16 2-3-3 聚丙烯纖維之親水化 17 2-4 接枝單體化合物 19 2-4-1 接枝丙烯酸單體 20 2-4-2 接枝硫脲單體吸附重金屬 23 2-5 小結 24 第三章 實驗設備、材料與方法 25 3-1 研究架構與實驗流程 25 3-2 實驗設備及材料 26 3-2-1 實驗設備 26 3-2-2 實驗藥品 28 3-3 實驗步驟與方法 29 3-3-1 電漿系統與電漿參數 29 3-3-2 水分乾燥速率測定 31 3-3-3 過氧化物量測 32 3-3-4 電漿改質接枝程序(Ⅰ) – 硫脲單體接枝 33 3-3-5 電漿改質接枝程序(Ⅱ) 33 3-3-6 聚丙烯纖維接枝特性分析 34 第四章 結果與討論 36 4-1 電漿表面改質聚丙烯纖維最適操作條件探討 36 4-1-1 電漿功率對聚丙烯纖維表面親水性之影響 36 4-1-2 電漿改質時間對聚丙烯纖維表面親水性之影響 42 4-1-3 電漿氣體壓力對聚丙烯纖維表面親水性之影響 45 4-1-4 過氧化物濃度測量結果 49 4-1-5 小結 50 4-2 電漿改質接枝程序 51 4-2-1 接枝硫脲單體去除水中銅離子之效能 51 4-2-2 接枝丙烯酸單體去除水中銅離子之效能 55 4-2-3 NaOH濃度對接枝丙烯酸單體去除銅離子效率之影響 56 4-2-4 接枝丙烯酸單體後接枝硫脲單體去除水中銅離子之效能 60 4-2-5 小結 76 4-3電漿改質接枝除銅離子之可行性 77 4-3-1電漿改質接枝除銅離子綜合比較 77 4-3-2 XPS表面分析 79 4-3-3電漿改質接枝除銅離子之評估 87 第五章 結論與建議 89 5-1 結論 89 5-2 建議 90 表目錄 表2-1 各種表面處理法的比較 9 表2-2 低溫電漿的發生法與其物理因子 10 表2-3 不同電漿操作參數產生過氧化基數量比較 12 表2-4 聚丙烯纖維主要用途 16 表3-1 電漿改質聚丙烯纖維參數表 31 表4-1不同電漿氣體在不同功率條件下處理後聚丙烯纖維水分散失速率之比較(電漿功率 500W、1000W;改質時間2秒及10秒) 41 表4-2不同電漿氣體在不同改質時間下聚丙烯纖維水分散失速率之比較(功率1000W、壓力200mtorr;改質時間2sec、10sec、30sec) 45 表4-3不同電漿氣體在不同電漿氣體壓力條件下處理後聚丙烯纖維水分散失速率比較(功率1000W;壓力100、200、300mtorr;改質時間30sec) 48 表4-4 過氧化基測量結果 49 表4-5 不同氣體電漿改質聚丙烯纖維經不同條件硫脲接枝之Cu2+去除率 54 表4-6 聚丙烯纖維經不同氣體電漿改質接枝丙烯酸後於不同NaOH濃度下之Cu2+去除效率 60 表4-7 氬氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之 Cu2+去除率 65 表4-8 氮氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 70 表 4-9 氧氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 75 表4-10 電漿改質各程序接枝之銅離子去除率 79 圖目錄 圖 2-1 電漿腔體內可能產生的反應 6 圖2-2 壓力對電子(Te)、離子(Ti)、中性粒子(Tn)溫度關係 8 圖2-3 電漿表面改質濕式接枝示意圖 14 圖2-1 聚丙烯結構式 15 圖2-5 丙烯酸單體結構式 20 圖2-6 SR表面聚丙烯酸接枝圖 21 圖2-7 丙烯酸單體吸附重金屬離子 22 圖2-8 丙烯酸單體配位螯合去除銅離子 23 圖2-9 硫脲單體結構式 23 圖2-10 硫脲單體溶於水中的三種型式 24 圖3-1 常溫電漿改質聚丙烯纖維接枝去除銅離子之可能性實驗流程圖 27 圖3-2 電漿機台 29 圖3-3 DPPH溶液在波長520 nm之校正區線 32 圖3-4 ESCA裝置示意圖 35 圖4-1(a) 聚丙烯纖維經氬氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間2sec) 37 圖4-1(b) 聚丙烯纖維經氮氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間2sec) 37 圖4-2(a) 聚丙烯纖維經氮氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間2sec) 38 圖4-2(b) 聚丙烯纖維經氮氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間10sec) 39 圖4-3(a) 聚丙烯纖維經氧氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間2sec) 40 圖4-3(b) 聚丙烯纖維經氧氣電漿不同功率改質後之表面水分散失率(功率500W、1000W;改質時間10sec) 40 圖4-4聚丙烯纖維經氬氣電漿不同時間改質之表面水分散失率(功率1000W、壓力200mtorr;改質時間2、10、30sec) 43 圖4-5聚丙烯纖維經氮氣電漿不同時間改質之表面水分散失率(功率1000W、壓力200mtorr;改質時間2、10、30sec) 43 圖4-6聚丙烯纖維經氧氣電漿不同時間改質之表面水分散失率(功率1000W、壓力200mtorr;改質時間2、10、30sec 44 圖4-7 聚丙烯纖維經氬氣電漿不同壓力改質30秒後之表面水分散失率 46 圖4-8 聚丙烯纖維經氮氣電漿不同壓力改質30秒後之表面水分散失率 47 圖 4-9 聚丙烯纖維經氧氣電漿不同壓力改質30秒後之表面水分散失率 47 圖4-10 氬氣電漿改質聚丙烯纖維經不同條件硫脲接枝之Cu2+去除 率( initial Cu2+ = 40ppm ) 52 圖4-11 氮氣電漿改質聚丙烯纖維經不同條件硫脲接枝之Cu2+去除率( initial Cu2+ = 40ppm ) 53 圖4-12 氧氣電漿改質聚丙烯纖維經不同條件硫脲接枝之Cu2+去除率 ( initial Cu2+ = 40ppm ) 53 圖4-13 不同氣體電漿改質聚丙烯纖維後接枝丙烯酸單體之Cu2+去除率 ( initial Cu2+ = 200ppm ) 55 圖4-14 聚丙烯纖維經氬氣電漿改質接枝丙烯酸後於不同NaOH濃度下之Cu2+去除效率( initial Cu2+ =200ppm ) 57 圖4-15 聚丙烯纖維經氮氣電漿改質接枝丙烯酸後於不同NaOH濃度下之Cu2+去除效率( initial Cu2+ =200ppm ) 58 圖4-16 聚丙烯纖維經氧氣電漿改質接枝丙烯酸後於不同NaOH濃度下之Cu2+去除效率( initial Cu2+ =200ppm ) 58 圖4-17 氬氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 0.5N;initial Cu2+ =200ppm) 61 圖4-18 氬氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 1N;initial Cu2+ =200ppm) 62 圖4-19 氬氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 1.5N;initial Cu2+=200ppm) 63 圖4-20 氬氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 2N;initial Cu2+=200ppm) 64 圖4-21 氮氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 0.5N;initial Cu2+=200ppm) 66 圖4-22 氮氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率 ( NaOH = 1N;initial Cu2+ = 200ppm) 67 圖4-23 氮氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 1.5N;initial Cu2+ = 200ppm ) 68 圖4-24 氮氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 2N;initial Cu2+ = 200ppm ) 69 圖4-25 氧氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 0.5N;initial Cu2+ = 200ppm ) 71 圖4-26 氧氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 1N;initial Cu2+ = 200ppm ) 72 圖4-27 氧氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 1.5N;initial Cu2+ = 200ppm ) 73 圖4-28 氧氣電漿改質聚丙烯纖維接枝丙烯酸單體後接枝硫脲單體之Cu2+去除率( NaOH = 2N;initial Cu2+ = 200ppm ) 74 圖 4-29 各階段實驗以XPS表面分析技術分析之全掃描能譜圖 80 圖4-30 聚丙烯纖維經氬氣電漿表面改質接枝硫脲單體後吸附銅離子之XPS各元素細掃描能譜圖 82 圖4-31 聚丙烯纖維經氬氣電漿表面改質接枝丙烯酸單體後吸附銅離子之XPS各元素細掃描能譜圖 84 圖4-32 聚丙烯纖維經氬氣電漿表面改質後接枝丙烯酸單體及硫脲單體後吸附銅離子之XPS各元素細掃描能譜圖 86

    Aly, A.S., Jeon, B.D., and Park, Y.H., 1997. Preparation and evaluation of the chitin derivatives for wastewater treatments. Journal of Applied Polymer Science 65(10), 1939-1946.
    Celik, M. and Sacak, M., 1996. Grafting of acrylamide-methacrylic acid mixture onto poly(ethylene terephthalate) fibers by azobisisobutyronitrile. Journal of Applied Polymer Science 59(4), 609-617.
    Chen, J., Nho, Y.C., and Park, J.S., 1998. Grafting polymerization of acrylic acid onto preirradiated polypropylene fabric. Radiation Physics and Chemistry 52(1-6), 201-206.
    Chen-Yang, Y.W., Liao, J.D., Kau, J.Y., Huang, J., Chang, W.T., and Chen, C.W., 2000. Surface modifications of expanded poly(tetrafluoroethylene) sheets assisted by CO2 antenna coupling microwave plasma. Macromolecules 33(15), 5638-5643.
    Chirila, V., Marginean, G., and Brandl, W., 2005. Effect of the oxygen plasma treatment parameters on the carbon nanotubes surface properties. Surface & Coatings Technology 200(1-4), 548-551.
    Choi, H.S., Kim, Y.S., Zhang, Y., Tang, S., Myung, S.W., and Shin, B.C., 2004. Plasma-induced graft co-polymerization of acrylic acid onto the polyurethane surface. Surface & Coatings Technology 182(1), 55-64.
    Choi, S.H., Lee, K.P., Lee, J.G., and Nho, Y.C., 2000. Graft copolymer-metal complexes obtained by radiation grafting on polyethylene film. Journal of Applied Polymer Science 77(3), 500-508.
    Dogue, I.L.J., Forch, R., and Mermilliod, N., 1995. Plasma-induced hydrogel grafting of vinyl monomers on polypropylene. Journal Of Adhesion Science And Technology 9(12), 1531-1545.
    Gherrou, A., Kerdjoudj, H., Molinari, R., and Drioli, E., 2002. Removal of silver and copper ions from acidic thiourea solutions with a supported liquid membrane containing D2EHPA as carrier. Separation And Purification Technology 28(3), 235-244.

    Gupta, B., Plummer, C., Bisson, I., Frey, P., and Hilborn, J., 2002. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials 23(3), 863-871.
    Karakisla, M., 2003. The adsorption of Cu(II) ion from aqueous solution upon acrylic acid grafted poly(ethylene terephthalate) fibers. Journal of Applied Polymer Science 87(8), 1216-1220.
    Khalil, M.I. and Abdel-Halim, M.G., 2000. Preparation of some starch-based neutral chelating agents. Carbohydrate Research 324(3), 189-199.
    Lee, S.D., Hsiue, G.H., and Kao, C.Y., 1996. Preparation and characterization of a homobifunctional silicone rubber membrane grafted with acrylic acid via plasma-induced graft copolymerization. Journal Of Polymer Science Part A-Polymer Chemistry 34(1), 141-148.
    Liu, K.Z., Suzuki, Y., and Fukuda, Y., 2004. Surface analysis of (NH2)(2)CS-treated GaP(001) by AES and XPS. Surface and Interface Analysis 36(8), 966-968.
    Nagatsu, M., Terashita, F., and Koide, Y., 2003. Low-temperature sterilization with surface-wave-excited oxygen plasma. Japanese Journal Of Applied Physics Part 2-Letters 42(7B), L856-L859.
    Nezu, A., Morishima, T., and Watanabe, T., 2003. Thermal plasma treatment of waste ion-exchange resins doped with metals. Thin Solid Films 435(1-2), 335-339.
    Nho, Y.C., Chen, J., and Jin, J.H., 1999. Grafting polymerization of styrene onto preirradiated polypropylene fabric. Radiation Physics and Chemistry 54(3), 317-322.
    Ruiz, M., Sastre, A., and Guibal, E., 2002. Pd and Pt recovery using chitosan gel beads. II. Influence of chemical modifications on sorption properties. Separation Science and Technology 37(10), 2385-2403.
    Senna, M.M., Siyam, T., and Mahdy, S., 2004. Physico-chemical studies on Cu(II) complexes of acrylate chelating polymers. Journal Of Macromolecular Science-Pure And Applied Chemistry A41(10), 1187-1203.
    Somanathan, N., Balasubramaniam, B., and Subramaniam, V., 1995. Grafting Of Polyester Fibers. Journal Of Macromolecular Science-Pure And Applied Chemistry A32(5), 1025-1036.
    Svorcik, V., Kolarova, K., Slepicka, P., Mackova, A., Novotna, M., and Hnatowicz, V., 2006. Modification of surface properties of high and low density polyethylene by Ar plasma discharge. Polymer Degradation and Stability 91(6), 1219-1225.
    Tsuchida, K. and Bell, J.P., 2001. New epoxy/episulfide resin system for electronic applications. I. Curing mechanism and properties. Journal of Applied Polymer Science 79(8), 1359-1370.
    Vallon, S., Hofrichter, A., Drevillon, B., KlembergSapieha, J.E., Martinu, L., and PoncinEpaillard, F., 1996. Improvement of the adhesion of silica layers to polypropylene induced by nitrogen plasma treatment. Thin Solid Films 291(68-73.
    Wade, G.A. and Cantwell, W.J., 2000. Adhesive bonding and wettability of plasma treated, glass fiber-reinforced nylon-6,6 composites. Journal of Materials Science Letters 19(20), 1829-1832.
    Yan, C.L. and Lu, D.N., 2006. Surface energy and wettability of plasma-treated polyacrylonitrile fibers. Plasma Chemistry And Plasma Processing 26(2), 119-126.
    Yang, J.M., Lin, H.T., Wu, T.H., and Chen, C.C., 2003. Wettability and antibacterial assessment of chitosan containing radiation-induced graft nonwoven fabric of polypropylene-g-acrylic acid. Journal of Applied Polymer Science 90(5), 1331-1336.
    Zhang, H.G., Ritchie, I.M., and La Brooy, S.R., 2004. The adsorption of gold thiourea complex onto activated carbon. Hydrometallurgy 72(3-4), 291-301.
    Zhou, D., Zhang, L., and Guo, S.L., 2005. Mechanisms of lead biosorption on cellulose/chitin beads. Water Research 39(16), 3755-3762.
    高正雄,「超 LSI 時代 :電漿化學」,復漢,1984。
    游振宗,「纖維高分子化學」,超級科技,1989。
    張益國,「黃酸鹽程序去除銅離子及其生成物之穩定性」,國立成功大學環境工程研究所博士論文,台灣台南,2003。
    陳滄欽,「澱粉黃酸鹽程序捕集及熱處理回收重金屬之研究」,國立成功大學環境工程研究所碩士論文,台灣台南,2004。

    下載圖示
    2007-08-29公開
    QR CODE