簡易檢索 / 詳目顯示

研究生: 林柏廷
Lin, Po-Ting
論文名稱: 運用多尺度分子模擬探討奈米添加劑對鋰離子電池膠態電解質中鋰離子傳輸機制之影響
Exploring the Effects of Nanofillers on the Lithium Ion Conduction Mechanism of Gel Polymer Electrolyte for Lithium Ion Battery via Multiscale Molecular Simulation
指導教授: 邱繼正
Chiu, Chi-Cheng
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 英文
論文頁數: 97
中文關鍵詞: 鋰離子電池膠態電解質奈米粒子多尺度分子模擬
外文關鍵詞: lithium ion battery, gel polymer electrolyte, nanoparticle, multiscale molecular simulation
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在鋰離子電池充放電過程中,電解質為電池重要組成,用以在電池內部傳輸鋰離子。眾多電解質種類中,膠態電解質在室溫下具有高導電性並且高安全性。在此我們結合分子模擬(AA-MD) 和耗散粒子動力學模擬(DPD) 來探討混摻奈米添加劑對於丙烯腈-乙酸乙烯酯共聚物(PAN-co-PVAc,PAV) 和聚甲基丙烯酸甲酯(PMMA)共混成的膠態電解質之鋰離子傳輸機制。我們探討了三種奈米添加劑,包括氧化石墨烯量子點(GOQD)、二氧化鈦(TiO2)、二氧化矽(SiO2),其表面上的離子親和力,並進一步分析高分子鏈段和奈米添加劑周圍的鋰離子動力學性質。我們也利用DPD 模擬研究奈米添加劑對高分子自組裝結構形態變化的影響。
    全原子模擬結果顯示若將PMMA 共混到PAV 中會略微降低高分子薄膜表面的陰離子親和力。但PMMA 在電解質中會包裹在高分子纖維內,高分子聚合物膜表面上的陰離子親和力降低效果是有限的。在三種奈米添加劑中,TiO2 與陰離子具有最強的親和力,導致降低陰離子擴散係數,但可提升鋰離子在奈米粒子表面上的擴散係數。透過離子-溶劑配位的最小化可使更多的自由鋰離子平順地傳輸於TiO2 表面。GOQD 可區分為富含醚基和富含羥基表面。由於其兩個不同表面上的相反介面電位,使得GOQD 具有中度陰離子親和力。此外GOQD 可有效抑制表面離子-溶劑配位的形成,增加更多的自由鋰離子。SiO2 則具有最弱的陰離子親和力,故其表面的PF6 擴散係數最高。雖然SiO2 也具有表面離子-溶劑配位的抑制作用,但其缺乏固定陰離子的能力,抵銷自由鋰離子增加效應。DPD 模擬結果顯示PMMA 會橋接在PAV 上的VAc,故在電解液中可良好地分散並包裹在高分子纖維內。而奈米添加劑與PMMA 具有良好的交互作用,使奈米粒子可平均分佈於纖維表面並與電解液接觸。PMMA 的添加會導致高分子纖維孔道半徑的些微減小。由於對整個高分子構型的抑制作用,摻雜有奈米粒子的膠態電解質的孔道顯著小於傳統膠態電解質,並提升高分子網路與電解質之接觸。
    最後,我們總結了高分子纖維,奈米添加劑和離子之間的競爭關係。路易斯酸型奈米粒子可附著在高分子聚合物上並且與陰離子具有更強的相互作用以促進鋰離子傳導。然而,路易斯鹼型奈米粒子則與高分子聚合物競爭與鋰離子之間的相互作用,導致減緩鋰離子傳導。在奈米尺度上,奈米粒子可以固定陰離子並降低表面的離子-溶劑配位。在介觀尺度上,奈米粒子會附著在分散良好的PMMA 上並暴露於電解質中,並且減少高分子纖維孔道半徑。本模擬結果可與實驗數據相互應並進一步提供奈米添加劑對膠態電解質鋰離子傳輸的分子機制。
    關鍵字: 鋰離子電池、膠態電解質、奈米粒子、多尺度分子模擬

    Electrolyte is an important component of lithium ion battery (LIB) that transporting Li+ within LIB during charging/ discharging process. Among various categories of electrolytes, gel polymer electrolytes (GPEs) have the advantage of high conductivity at room temperature and high safety. Here, we combined all-atom molecular dynamics (AA-MD) and dissipative particle dynamics (DPD) simulation to examine the mechanism of nanoparticle on affecting Li+ transport within the GPE composed of poly (acrylonitrile-co-vinyl acetate) (PAV) blended with poly (methyl methacrylate) (PMMA). In particular, we investigated the ion affinity on surface of three types of nanofillers, including graphene oxide quantum dot (GOQD), Titanium dioxide (TiO2), and Silicon dioxide (SiO2). We examined the dynamic properties of lithium ions near the polymer segments and nanoparticles with AA-MD. Furthermore, we utilized DPD simulation to study the morphology variations of self-assembled polymer framework with the addition of nanoparticles.
    AA-MD simulation results showed that blending PMMA into PAV slightly decreases the anion affinity PF6 on the surface of polymer film. Yet, the fact of PMMA wrapped inside the polymer framework while soaked in electrolytes only leads to a minor effect on PF6 affinity near the polymer film. Among three nanofillers, TiO2 nanoparticle exhibits the strongest affinity with PF6 , resulting in the lowest diffusion coefficient of PF6 and the highest diffusion coefficient of Li+. Also, the minimized coordination within the Li+ solvation shell allows more free-Li+ to transfer smoothly on TiO2 surface. GOQD has two different surfaces, i.e. a rich -O- one and a rich -OH one, respectively. This attributes a medium affinity to PF6 due to the opposite electrostatic potentials on two surfaces. In addition, GOQD suppresses the formation of ion-solvent clusters with less amount of Li+-DEC coordination near the surface, increasing the amount of free Li+. SiO2 exhibits the highest PF6 diffusion coefficient near its surface due to the weakest affinity with PF6 . The suppressive effect on coordination of ion solvent (Li+-EC) also occurs on the SiO2 surface. Yet SiO2 lacks the ability of immobilizing PF6 , offsetting the free Li+ transport. DPD simulation results showed that PMMA segments attach and bridge on PVAc functional group of PAV chains, thereby being well-dispersed and wrapped inside the polymer framework while soaked in electrolytes. Nanofiller with strong interaction with PMMA is then well-dispersed on the polymer framework surface and exposed to electrolyte. The addition of PVAc reduce the electrolyte channel size within the framework. The channel size of GPEs doped with nanofillers are significantly smaller than that of ordinary GPEs due to the suppressive effect on whole polymer morphology, enhancing the contact between polymer framework and electrolyte.
    Conclusively, we summarized a competitive relationship among polymer fibers, nanofillers and ions. A Lewis acid-type nanoparticle attaches on polymer PAVM and has stronger interaction with PF6 to facilitate the Li+ conduction. However, a Lewis base-type nanoparticle competes with polymer PAVM for the interaction between Li+, causing the decreasing Li+ conduction mechanism. At nanoscale, nanoparticles can immobilize the anion and minimize the coordination of ion-solvent near the surface. At mesoscale, nanoparticles attach on welldispersed PMMA, distribute on polymer framework surface, and decrease the electrolyte channel size. This enhances the microscopic effects described above. The presented results provide molecular insights for GPE doped with nanofillers that correspond to the experimental observation.
    Keywords: lithium ion battery, gel polymer electrolyte, nanoparticle, multiscale molecular
    simulation

    摘要...............i Abstract ...............iii Acknowledgements .............v Table of Contents ............vi List of Tables ..............ix List of Figures ..............xi List of Symbols .............xviii 1 INTRODUCTION ............1 1.1 Lithium Ion Battery ..........1 1.2 Electrolytes ............3 1.2.1 Liquid Electrolytes ..........3 1.2.2 Solid State Electrolytes ........5 1.2.3 Gel Polymer Electrolytes .........10 1.3 Polymer Electrolyte in LIB ..........11 1.3.1 Polyethylene Oxide (PEO) ........12 1.3.2 Poly (acrylonitrile) (PAN) ........13 1.3.3 Blend/ co-Polymer Electrolyte ........16 1.4 Passive Fillers for Polymer Electrolyte ........18 1.4.1 Metal Oxide ...........18 1.4.2 Graphene Oxide .........20 1.4.3 Molecular Effects of Nanocomposite ......21 1.5 Motivation .............21 2 METHODS .............24 2.1 All-atom Molecular Dynamics Simulation ......24 2.1.1 All-atom Model ..........24 2.1.2 Preparation of Nanoparticle Material .......26 2.1.3 All-atom Simulation detail ........28 2.2 Dissipative Particle Dynamics Simulation ......31 2.2.1 DPD Theory ...........31 2.2.2 Determination of the χ parameter ......35 2.2.3 Dissipative Particle Dynamics Simulation detail .....39 2.3 Structural and Dynamics Properties .......42 2.3.1 Transverse Density Profiles and Ion Affinity ....42 2.3.2 Radial Distribution Function .......42 2.3.3 Lithium ion Coordination ........42 2.3.4 Electrostatic Potential ........43 2.3.5 Drift Velocity and Diffusion Coefficient .....43 2.3.6 Accessible Surface Area .........44 2.3.7 Void Size Distribution ........44 2.3.8 Mean Square Displacement .......45 3 RESULTS AND DISCUSSION ..........46 3.1 Li+ Affinity Characterization .........46 3.1.1 Bulk Electrolyte .........46 3.1.2 PAVM Polymer .........48 3.2 PAV and PAVM Polymer/ Electrolytes Interface ......50 3.2.1 Transverse Density and Ion Affinity Profile .....50 3.2.2 Lithium ion Coordination ........53 3.2.3 Electrostatic Potential ........56 3.2.4 Diffusion Coefficient under Electric Field ......57 3.3 Nanoparticle/ Electrolytes Interface (GOQD/ TiO2/ SiO2) ....58 3.3.1 Transverse Density and Ion Affinity Profile .....58 3.3.2 Lithium ion Coordination ........63 3.3.3 Electrostatic Potential ........66 3.3.4 Diffusion Coefficient under Electric Field ......68 3.4 Effects of Lewis Acid/Base Properties of Nanoparticle .....69 3.4.1 Transverse Density and Ion Affinity Profile .....70 3.4.2 Lithium ion Coordination ........72 3.4.3 Electrostatic Potential ........74 3.4.4 Diffusion Coefficient under Electric Field ......75 3.5 Mesoscopic Effect of Polymer and Nanofillers ......76 3.5.1 Polymer Morphology in Two Different Solvents ....76 3.5.2 Accessible Surface Area .........78 3.5.3 Polymer and Nanofiller Morphology .......79 3.5.4 Void Size Distribution ........80 3.5.5 Diffusion coefficient .........82 4 CONCLUSION .............83 REFERENCES .............86

    [1] L. Long, S. Wang, M. Xiao, Y. Meng, Polymer electrolytes for lithium polymer batteries, Journal of
    Materials Chemistry A 4 (26) (2016) 10038–10069.
    [2] R. Chen, W. Qu, X. Guo, L. Li, F. Wu, The pursuit of solid-state electrolytes for lithium batteries: from
    comprehensive insight to emerging horizons, Materials Horizons 3 (6) (2016) 487–516.
    [3] A. M. Stephan, Review on gel polymer electrolytes for lithium batteries, European polymer journal 42 (1)
    (2006) 21–42.
    [4] T.-F. Yeh, W.-L. Huang, C.-J. Chung, I. T. Chiang, L.-C. Chen, H.-Y. Chang, W.-C. Su, C. Cheng,
    S.-J. Chen, H. Teng, Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-
    Wavelength-Independent Photoluminescence, The Journal of Physical Chemistry Letters 7 (11) (2016)
    2087–2092.
    [5] R. Hiorns, Polymer Handbook, 4th edn, Edited by J Brandup, EH Immergut and EA Grulke, Associate
    Editors A Abe and DR Bloch, John Wiley and Sons, New York, 1999, Polymer International 49 (7)
    (2000) 807–807.
    [6] A. R. Kampf, HANDBOOK OF MINERALOGY, VOLUME: V. Borates, Carbonates, Sulfates. By John
    W. Anthony, Richard A. Bideaux, Kenneth W. Bladh, and Monte C. Nichols. Mineral Data Publishing,
    Tucson, Arizona; 2003, 813 p., American Mineralogist 88 (11-12) (2003) 1842–1842.
    [7] S.-H. Wang, Y.-Y. Lin, C.-Y. Teng, Y.-M. Chen, P.-L. Kuo, Y.-L. Lee, C.-T. Hsieh, H. Teng, Immobilization
    of Anions on Polymer Matrices for Gel Electrolytes with High Conductivity and Stability in
    Lithium Ion Batteries, ACS Applied Materials & Interfaces 8 (23) (2016) 14776–14787.
    [8] Y. M. Chen, S. T. Hsu, Y. H. Tseng, T. F. Yeh, S. S. Hou, J. S. Jan, Y. L. Lee, H. S. Teng, Minimization
    of Ion-Solvent Clusters in Gel Electrolytes Containing Graphene Oxide Quantum Dots for Lithium-Ion
    Batteries, Small 14 (12) (2018) 11.
    [9] H. Lee, M. Yanilmaz, O. Toprakci, K. Fu, X. Zhang, A review of recent developments in membrane
    separators for rechargeable lithium-ion batteries, Energy & Environmental Science 7 (12) (2014) 3857–
    3886.
    [10] Y. Kato, S. Hori, T. Saito, K. Suzuki, M. Hirayama, A. Mitsui, M. Yonemura, H. Iba, R. Kanno, Highpower
    all-solid-state batteries using sulfide superionic conductors, Nature Energy 1 (2016) 16030.
    [11] S. B. Aziz, T. J. Woo, M. F. Z. Kadir, H. M. Ahmed, A conceptual review on polymer electrolytes and
    ion transport models, Journal of Science: Advanced Materials and Devices 3 (1) (2018) 1–17.
    [12] A. Maitra, A. Heuer, Cation transport in polymer electrolytes: A microscopic approach, Physical review
    letters 98 (22) (2007) 227802.
    [13] Z. Wang, B. Huang, R. Xue, X. Huang, L. Chen, Spectroscopic investigation of interactions among components
    and ion transport mechanism in polyacrylonitrile based electrolytes, Solid State Ionics 121 (1)
    (1999) 141–156.
    [14] K. S. Ngai, S. Ramesh, K. Ramesh, J. C. Juan, A review of polymer electrolytes: fundamental, approaches
    and applications, Ionics 22 (8) (2016) 1259–1279.
    [15] H.-S. Min, D.-W. Kang, D.-Y. Lee, D.-W. Kim, Gel polymer electrolytes prepared with porous membranes
    based on an acrylonitrile/methyl methacrylate copolymer, Journal of Polymer Science Part B:
    Polymer Physics 40 (14) (2002) 1496–1502.
    [16] R. D. Groot, P. B. Warren, Dissipative particle dynamics: Bridging the gap between atomistic and mesoscopic
    simulation, The Journal of Chemical Physics 107 (11) (1997) 4423–4435.
    [17] L. Cheng, J. Yan, G.-N. Zhu, J.-Y. Luo, C.-X. Wang, Y.-Y. Xia, General synthesis of carbon-coated
    nanostructure Li4Ti5O12 as a high rate electrode material for Li-ion intercalation, Journal of Materials
    Chemistry 20 (3) (2010) 595–602.
    [18] J.-M. Tarascon, M. Armand, Issues and challenges facing rechargeable lithium batteries, World Scientific,
    2011, pp. 171–179.
    [19] W. Young, W. Kuan, T. H. Epps III, Block copolymer electrolytes for rechargeable lithium batteries,
    Journal of Polymer Science Part B: Polymer Physics 52 (1) (2014) 1–16.
    [20] M. Dissanayake, Conductivity variation of the liquid electrolyte, EC: PC: LiCF3SO3 with salt concentration,
    Sri Lankan Journal of Physics 7.
    [21] X. Cheng, J. Pan, Y. Zhao, M. Liao, H. Peng, Gel polymer electrolytes for electrochemical energy storage,
    Advanced Energy Materials 8 (7) (2018) 1702184.
    [22] H. Zhang, C. Li, M. Piszcz, E. Coya, T. Rojo, L. M. Rodriguez-Martinez, M. Armand, Z. Zhou, Single
    lithium-ion conducting solid polymer electrolytes: advances and perspectives, Chemical Society Reviews
    46 (3) (2017) 797–815.
    [23] G. N. Njikang, M. Gauthier, Interfacial properties of amphiphilic dendritic polymers, 2005, pp. 375–418.
    [24] H.-P. Hong, Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic
    conductors, Materials Research Bulletin 13 (2) (1978) 117–124.
    [25] H. Kim, Y. Ding, P. A. Kohl, LiSICON–ionic liquid electrolyte for lithium ion battery, Journal of Power
    Sources 198 (2012) 281–286.
    [26] V. Thangadurai, W. Weppner, Recent progress in solid oxide and lithium ion conducting electrolytes
    research, Ionics 12 (1) (2006) 81–92.
    [27] T. Takahashi, H. Iwahara, Ionic conduction in perovskite-type oxide solid solution and its application to
    the solid electrolyte fuel cell, Energy Conversion 11 (3) (1971) 105–111.
    [28] J. Feng, L. Lu, M. Lai, Lithium storage capability of lithium ion conductor Li1:5Al0:5Ge1:5(PO4)3, Journal
    of Alloys and Compounds 501 (2) (2010) 255–258.
    [29] Y. Deng, C. Eames, J.-N. Chotard, F. Lalère, V. Seznec, S. Emge, O. Pecher, C. P. Grey, C. Masquelier,
    M. S. Islam, Structural and mechanistic insights into fast lithium-ion conduction in Li4SiO4–Li3PO4
    solid electrolytes, Journal of the American Chemical Society 137 (28) (2015) 9136–9145.
    [30] N. Kamaya, K. Homma, Y. Yamakawa, M. Hirayama, R. Kanno, M. Yonemura, T. Kamiyama, Y. Kato,
    S. Hama, K. Kawamoto, A lithium superionic conductor, Nature materials 10 (9) (2011) 682.
    [31] Y. Mo, S. P. Ong, G. Ceder, First principles study of the Li10GeP2S12 lithium super ionic conductor
    material, Chemistry of Materials 24 (1) (2011) 15–17.
    [32] X. Liang, L. Wang, Y. Jiang, J. Wang, H. Luo, C. Liu, J. Feng, In-channel and In-plane Li ion diffusions
    in the superionic conductor Li10GeP2S12 Probed by solid-state NMR, Chemistry of Materials 27 (16)
    (2015) 5503–5510.
    [33] Y. Wang, W. D. Richards, S. P. Ong, L. J. Miara, J. C. Kim, Y. Mo, G. Ceder, Design principles for
    solid-state lithium superionic conductors, Nature materials 14 (10) (2015) 1026.
    [34] A. M. Stephan, K. Nahm, Review on composite polymer electrolytes for lithium batteries, Polymer
    47 (16) (2006) 5952–5964.
    [35] W. H. Meyer, Polymer Electrolytes for Lithium-Ion Batteries, Advanced Materials 10 (6) (1998) 439–
    448.
    [36] M. Armand, Polymers with Ionic Conductivity, Advanced Materials 2 (6-7) (1990) 278–286.
    [37] C. Berthier, W. Gorecki, M. Minier, M. B. Armand, J. M. Chabagno, P. Rigaud, Microscopic investigation
    of ionic conductivity in alkali metal salts-poly(ethylene oxide) adducts, Solid State Ionics 11 (1)
    (1983) 91–95.
    [38] D. E. Fenton, Complexes of alkali metal ions with poly (ethylene oxide), Polymer 14 (1973) 589.
    [39] J. Kalhoff, G. G. Eshetu, D. Bresser, S. Passerini, Safer Electrolytes for Lithium-Ion Batteries: State of
    the Art and Perspectives, ChemSusChem 8 (13) (2015) 2154–2175.
    [40] I. Osada, H. de Vries, B. Scrosati, S. Passerini, Ionic-Liquid-Based Polymer Electrolytes for Battery
    Applications, Angewandte Chemie International Edition 55 (2) (2016) 500–513.
    [41] M. J. Park, I. Choi, J. Hong, O. Kim, Polymer electrolytes integrated with ionic liquids for future electrochemical
    devices, Journal of Applied Polymer Science 129 (5) (2013) 2363–2376.
    [42] S. Tan, Y. J. Ji, Z. R. Zhang, Y. Yang, Recent Progress in Research on High-Voltage Electrolytes for
    Lithium-Ion Batteries, ChemPhysChem 15 (10) (2014) 1956–1969.
    [43] E. Quartarone, P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: recent advances
    and perspectives, Chemical Society Reviews 40 (5) (2011) 2525–2540.
    [44] F. Croce, G. Appetecchi, L. Persi, B. Scrosati, Nanocomposite polymer electrolytes for lithium batteries,
    Nature 394 (6692) (1998) 456.
    [45] V. D. Noto, S. Lavina, G. A. Giffin, E. Negro, B. Scrosati, Polymer electrolytes: Present, past and future,
    Electrochimica Acta 57 (2011) 4–13.
    [46] Y.-C. Jung, S.-M. Lee, J.-H. Choi, S. S. Jang, D.-W. Kim, All solid-state lithium batteries assembled
    with hybrid solid electrolytes, Journal of The Electrochemical Society 162 (4) (2015) A704–A710.
    [47] H. W. Kim, P. Manikandan, Y. J. Lim, J. H. Kim, S.-c. Nam, Y. Kim, Hybrid solid electrolyte with
    the combination of Li7La3Zr2O12 ceramic and ionic liquid for high voltage pseudo-solid-state Li-ion
    batteries, Journal of Materials Chemistry A 4 (43) (2016) 17025–17032.
    [48] W. Liu, N. Liu, J. Sun, P.-C. Hsu, Y. Li, H.-W. Lee, Y. Cui, Ionic Conductivity Enhancement of Polymer
    Electrolytes with Ceramic Nanowire Fillers, Nano Letters 15 (4) (2015) 2740–2745.
    [49] Y. Zhao, C. Wu, G. Peng, X. Chen, X. Yao, Y. Bai, F. Wu, S. Chen, X. Xu, A new solid polymer electrolyte
    incorporating Li10GeP2S12 into a polyethylene oxide matrix for all-solid-state lithium batteries,
    Journal of Power Sources 301 (2016) 47–53.
    [50] Y. Ito, K. Kanehori, K. Miyauchi, T. Kudo, Ionic conductivity of electrolytes formed from PEOLiCF3SO3
    complex low molecular weight poly(ethylene glycol), Journal of Materials Science 22 (5)
    (1987) 1845–1849.
    [51] S. Choi, S. Jo, W. Lee, Y.-R. Kim, An Electrospun Poly(vinylidene fluoride) Nanofibrous Membrane
    and Its Battery Applications, Advanced Materials 15 (23) (2003) 2027–2032.
    [52] P. V. Wright, Electrical conductivity in ionic complexes of poly(ethylene oxide), British Polymer Journal
    7 (5) (1975) 319–327.
    [53] O. Borodin, G. D. Smith, Mechanism of ion transport in amorphous poly (ethylene oxide)/LiTFSI from
    molecular dynamics simulations, Macromolecules 39 (4) (2006) 1620–1629.
    [54] Z. Xue, D. He, X. Xie, Poly(ethylene oxide)-based electrolytes for lithium-ion batteries, Journal of Materials
    Chemistry A 3 (38) (2015) 19218–19253.
    [55] P. Johansson, First principles modelling of amorphous polymer electrolytes: Li+–PEO, Li+–PEI, and
    Li+–PES complexes, Polymer 42 (9) (2001) 4367–4373.
    [56] C.-L. Chen, H. Teng, Y.-L. Lee, Preparation of highly efficient gel-state dye-sensitized solar cells using
    polymer gel electrolytes based on poly(acrylonitrile-co-vinyl acetate), Journal of Materials Chemistry
    21 (3) (2011) 628–632.
    [57] H. Akashi, K. Sekai, K.-i. Tanaka, A novel fire-retardant polyacrylonitrile-based gel electrolyte for
    lithium batteries, Electrochimica Acta 43 (10) (1998) 1193–1197.
    [58] P. Raghavan, J. Manuel, X. Zhao, D.-S. Kim, J.-H. Ahn, C. Nah, Preparation and electrochemical characterization
    of gel polymer electrolyte based on electrospun polyacrylonitrile nonwoven membranes for
    lithium batteries, Journal of Power Sources 196 (16) (2011) 6742–6749.
    [59] G. B. Appetecchi, F. Croce, B. Scrosati, Kinetics and stability of the lithium electrode in
    poly(methylmethacrylate)-based gel electrolytes, Electrochimica Acta 40 (8) (1995) 991–997.
    [60] P. Carol, P. Ramakrishnan, B. John, G. Cheruvally, Preparation and characterization of electrospun
    poly(acrylonitrile) fibrous membrane based gel polymer electrolytes for lithium-ion batteries, Journal
    of Power Sources 196 (23) (2011) 10156–10162.
    [61] M. Watanabe, M. Kanba, H. Matsuda, K. Tsunemi, K. Mizoguchi, E. Tsuchida, I. Shinohara, High
    lithium ionic conductivity of polymeric solid electrolytes, Die Makromolekulare Chemie, Rapid Communications
    2 (12) (1981) 741–744.
    [62] R. Prasanth, V. Aravindan, M. Srinivasan, Novel polymer electrolyte based on cob-web electrospun
    multi component polymer blend of polyacrylonitrile/poly(methyl methacrylate)/polystyrene for lithium
    ion batteries-Preparation and electrochemical characterization, Journal of Power Sources 202 (2012)
    299–307.
    [63] F. Krok, J. R. Dygas, B. Misztal-Faraj, Z. Florjańczyk, W. Bzducha, Impedance and polarisation studies
    of new lithium polyelectrolyte gels, Journal of Power Sources 81-82 (1999) 766–771.
    [64] S.-H. Wang, S.-S. Hou, P.-L. Kuo, H. Teng, Poly(ethylene oxide)-co-Poly(propylene oxide)-Based Gel
    Electrolyte with High Ionic Conductivity and Mechanical Integrity for Lithium-Ion Batteries, ACS Applied
    Materials & Interfaces 5 (17) (2013) 8477–8485.
    [65] M. M. Nasef, R. R. Suppiah, K. Z. M. Dahlan, Preparation of polymer electrolyte membranes for lithium
    batteries by radiation-induced graft copolymerization, Solid State Ionics 171 (3) (2004) 243–249.
    [66] B. Choi, Y. Kim, H. Shin, Ionic conduction in PEO–PAN blend polymer electrolytes, Electrochimica
    Acta 45 (8-9) (2000) 1371–1374.
    [67] C. Liew, R. Durairaj, S. Ramesh, Rheological Studies of PMMA–PVC Based Polymer Blend Electrolytes
    with LiTFSI as Doping Salt, PloS one 9 (7) (2014) e102815.
    [68] C.-W. Liew, S. Ramesh, R. Durairaj, Impact of low viscosity ionic liquid on PMMA–PVC–LiTFSI polymer
    electrolytes based on AC-impedance, dielectric behavior, and HATR–FTIR characteristics, Journal
    of Materials Research 27 (23) (2012) 2996–3004.
    [69] Y. Ding, P. Zhang, Z. Long, Y. Jiang, F. Xu, W. Di, The ionic conductivity and mechanical property
    of electrospun P (VdF-HFP)/PMMA membranes for lithium ion batteries, Journal of membrane science
    329 (1-2) (2009) 56–59.
    [70] M. S. Su’ait, A. Ahmad, M. Y. A. Rahman, Ionic conductivity studies of 49% poly (methyl methacrylate)-
    grafted natural rubber-based solid polymer electrolytes, Ionics 15 (4) (2009) 497–500.
    [71] D. Zhou, G. Wang, W. Li, G. Li, C. Tan, M. Rao, Y. Liao, Preparation and performances of porous
    polyacrylonitrile–methyl methacrylate membrane for lithium-ion batteries, Journal of Power Sources
    184 (2) (2008) 477–480.
    [72] S. Ramesh, C.-W. Liew, E. Morris, R. Durairaj, Effect of PVC on ionic conductivity, crystallographic
    structural, morphological and thermal characterizations in PMMA–PVC blend-based polymer electrolytes,
    Thermochimica Acta 511 (1-2) (2010) 140–146.
    [73] N.-S. Choi, Y.-G. Lee, J.-K. Park, J.-M. Ko, Preparation and electrochemcial characteristics of plasticized
    polymer electrolytes based upon a P(VdF-co-HFP)/PVAc blend, Electrochimica acta 46 (10-11)
    (2001) 1581–1586.
    [74] I. Nicotera, L. Coppola, C. Oliviero, M. Castriota, E. Cazzanelli, Investigation of ionic conduction and
    mechanical properties of PMMA–PVdF blend-based polymer electrolytes, Solid State Ionics 177 (5-6)
    (2006) 581–588.
    [75] Z. Wen, T. Itoh, T. Uno, M. Kubo, O. Yamamoto, Thermal, electrical, and mechanical properties of composite
    polymer electrolytes based on cross-linked poly (ethylene oxide-co-propylene oxide) and ceramic
    filler, Solid State Ionics 160 (1-2) (2003) 141–148.
    [76] N. N. Sa’adun, R. Subramaniam, R. Kasi, Development and characterization of poly (1-vinyl
    pyrrolidone-co-vinyl acetate) copolymer based polymer electrolytes, The Scientific World Journal 2014.
    [77] K.-H. Lee, Y.-G. Lee, J.-K. Park, D.-Y. Seung, Effect of silica on the electrochemical characteristics of
    the plasticized polymer electrolytes based on the P(AN-co-MMA) copolymer, Solid State Ionics 133 (3-
    4) (2000) 257–263.
    [78] J. Stevens, W. Wieczorek, Ionically conducting polyether composites, Canadian journal of chemistry
    74 (11) (1996) 2106–2113.
    [79] Z. Li, G. Su, D. Gao, X. Wang, X. Li, Effect of Al2O3 nanoparticles on the electrochemical characteristics
    of P(VDF-HFP)-based polymer electrolyte, Electrochimica acta 49 (26) (2004) 4633–4639.
    [80] Z. Li, G. Su, X. Wang, D. Gao, Micro-porous P(VDF-HFP)-based polymer electrolyte filled with Al2O3
    nanoparticles, Solid State Ionics 176 (23-24) (2005) 1903–1908.
    [81] F. Croce, L. Persi, B. Scrosati, F. Serraino-Fiory, E. Plichta, M. Hendrickson, Role of the ceramic fillers
    in enhancing the transport properties of composite polymer electrolytes, Electrochimica Acta 46 (16)
    (2001) 2457–2461.
    [82] M. Stolarska, L. Niedzicki, R. Borkowska, A. Zalewska, W. Wieczorek, Structure, transport properties
    and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler, Electrochimica
    Acta 53 (4) (2007) 1512–1517.
    [83] J.-M. Tarascon, A. Gozdz, C. Schmutz, F. Shokoohi, P. Warren, Performance of Bellcore’s plastic
    rechargeable Li-ion batteries, Solid State Ionics 86 (1996) 49–54.
    [84] M. Caillon-Caravanier, B. Claude-Montigny, D. Lemordant, G. Bosser, Absorption ability and kinetics
    of a liquid electrolyte in PVDF–HFP copolymer containing or not SiO2, Journal of power sources 107 (1)
    (2002) 125–132.
    [85] A. Zalewska, M. Walkowiak, L. Niedzicki, T. Jesionowski, N. Langwald, Study of the interfacial stability
    of PVdF/HFP gel electrolytes with sub-micro-and nano-sized surface-modified silicas, Electrochimica
    Acta 55 (4) (2010) 1308–1313.
    [86] M. Walkowiak, A. Zalewska, T. Jesionowski, D. Waszak, B. Czajka, Effect of chemically modified
    silicas on the properties of hybrid gel electrolyte for Li-ion batteries, Journal of power sources 159 (1)
    (2006) 449–453.
    [87] S. Mogurampelly, O. Borodin, V. Ganesan, Computer simulations of ion transport in polymer electrolyte
    membranes, Annual review of chemical and biomolecular engineering 7 (2016) 349–371.
    [88] H. Kasemägi, M. Klintenberg, A. Aabloo, J. O. Thomas, Molecular dynamics simulation of the LiBF4–
    PEO system containing Al2O3 nanoparticles, Solid State Ionics 147 (3-4) (2002) 367–375.
    [89] P. Johansson, P. Jacobsson, TiO2 nanoparticles in polymer electrolytes: surface interactions, Solid State
    Ionics 170 (1-2) (2004) 73–78.
    [90] S. Mogurampelly, V. Ganesan, Effect of nanoparticles on ion transport in polymer electrolytes, Macromolecules
    48 (8) (2015) 2773–2786.
    [91] B. Hanson, V. Pryamitsyn, V. Ganesan, Mechanisms underlying ionic mobilities in nanocomposite polymer
    electrolytes, ACS Macro Letters 2 (11) (2013) 1001–1005.
    [92] W. Wieczorek, A. Zalewska, D. Raducha, Z. Florjańczyk, J. Stevens, Composite polyether electrolytes
    with Lewis acid type additives, The Journal of Physical Chemistry B 102 (2) (1998) 352–360.
    [93] L. V. Ganapatibhotla, J. K. Maranas, Interplay of surface chemistry and ion content in nanoparticle-filled
    solid polymer electrolytes, Macromolecules 47 (11) (2014) 3625–3634.
    [94] R. S. Kavathekar, P. Dev, N. J. English, J. M. D. MacElroy, Molecular dynamics study of water in contact
    with the TiO2 rutile-110, 100, 101, 001 and anatase-101, 001 surface, Molecular Physics 109 (13) (2011)
    1649–1656.
    [95] L. Martínez, R. Andrade, E. G. Birgin, J. M. Martínez, PACKMOL: a package for building initial configurations
    for molecular dynamics simulations, Journal of computational chemistry 30 (13) (2009) 2157–
    2164.
    [96] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and Testing of the OPLS All-Atom
    Force Field on Conformational Energetics and Properties of Organic Liquids, Journal of the American
    Chemical Society 118 (45) (1996) 11225–11236.
    [97] J. N. Canongia Lopes, J. Deschamps, A. A. H. Pádua, Modeling Ionic Liquids Using a Systematic All-
    Atom Force Field, The Journal of Physical Chemistry B 108 (6) (2004) 2038–2047.
    [98] J. N. Canongia Lopes, A. A. H. Pádua, Molecular Force Field for Ionic Liquids Composed of Triflate or
    Bistriflylimide Anions, The Journal of Physical Chemistry B 108 (43) (2004) 16893–16898.
    [99] E. G. Brandt, A. P. Lyubartsev, Systematic Optimization of a Force Field for Classical Simulations of
    TiO2–Water Interfaces, The Journal of Physical Chemistry C 119 (32) (2015) 18110–18125.
    [100] H. Tang, D. Liu, Y. Zhao, X. Yang, J. Lu, F. Cui, Molecular Dynamics Study of the Aggregation Process
    of Graphene Oxide in Water, The Journal of Physical Chemistry C 119 (47) (2015) 26712–26718.
    [101] F. S. Emami, V. Puddu, R. J. Berry, V. Varshney, S. V. Patwardhan, C. C. Perry, H. Heinz, Force field
    and a surface model database for silica to simulate interfacial properties in atomic resolution, Chemistry
    of Materials 26 (8) (2014) 2647–2658.
    [102] C. Schumacher, J. Gonzalez, M. Pérez-Mendoza, P. A. Wright, N. A. Seaton, Design of hybrid organic/
    inorganic adsorbents based on periodic mesoporous silica, Industrial & engineering chemistry research
    45 (16) (2006) 5586–5597.
    [103] M. J. Abraham, T. Murtola, R. Schulz, S. Páll, J. C. Smith, B. Hess, E. Lindahl, GROMACS: High performance
    molecular simulations through multi-level parallelism from laptops to supercomputers, SoftwareX
    1-2 (2015) 19–25.
    [104] S. Nose, A unified formulation of the constant temperature molecular dynamics methods, J. Chem. Phys.
    81 (1984) 511–519.
    [105] S. Nose, A molecular dynamics method for simulations in the canonical ensemble, Mol. Phys. 52 (1984)
    255–268.
    [106] W. G. Hoover, Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. 31 (1985) 1695–
    1697.
    [107] M. Parrinello, A. Rahman, Polymorphic transitions in single crystals: A new molecular dynamics, J.
    Appl. Phys. 52 (1981) 7182–7190.
    [108] T. Darden, D. York, L. Pedersen, Particle mesh Ewald An Nlog(N) method for Ewald sums in large
    systems, J. Chem. Phys. 98 (1993) 10089–10092.
    [109] U. Essmann, L. Perera, M. L. Berkowitz, T. Darden, H. Lee, L. G. Pedersen, A smooth particle mesh
    Ewald method, J. Chem. Phys. 103 (1995) 8577–8596.
    [110] B. Hess, H. Bekker, H. J. C. Berendsen, J. G. E. M. Fraaije, LINCS: A linear constraint solver for
    molecular simulations, J. Comput. Chem. 18 (1997) 1469–1472.
    [111] P. Hoogerbrugge, J. Koelman, Simulating microscopic hydrodynamic phenomena with dissipative particle
    dynamics, EPL (Europhysics Letters) 19 (3) (1992) 155.
    [112] R. D. Groot, T. J. Madden, Dynamic simulation of diblock copolymer microphase separation, The Journal
    of Chemical Physics 108 (20) (1998) 8713–8724.
    [113] P. Español, P. Warren, Statistical Mechanics of Dissipative Particle Dynamics, Europhysics Letters
    (EPL) 30 (4) (1995) 191–196.
    [114] A. Schlijper, P. Hoogerbrugge, C. Manke, Computer simulation of dilute polymer solutions with the
    dissipative particle dynamics method, Journal of Rheology 39 (3) (1995) 567–579.
    [115] R. D. Groot, K. Rabone, Mesoscopic simulation of cell membrane damage, morphology change and
    rupture by nonionic surfactants, Biophysical journal 81 (2) (2001) 725–736.
    [116] A. Maiti, S. McGrother, Bead–bead interaction parameters in dissipative particle dynamics: Relation
    to bead-size, solubility parameter, and surface tension, The Journal of chemical physics 120 (3) (2004)
    1594–1601.
    [117] S.-H. Chou, H.-K. Tsao, Y.-J. Sheng, Morphologies of multicompartment micelles formed by triblock
    copolymers, The Journal of chemical physics 125 (19) (2006) 194903.
    [118] S. Yamamoto, Y. Maruyama, S.-a. Hyodo, Dissipative particle dynamics study of spontaneous vesicle
    formation of amphiphilic molecules, The Journal of chemical physics 116 (13) (2002) 5842–5849.
    [119] Y.-J. Sheng, C.-H. Nung, H.-K. Tsao, Morphologies of star-block copolymers in dilute solutions, The
    Journal of Physical Chemistry B 110 (43) (2006) 21643–21650.
    [120] S. Yamamoto, S.-A. Hyodo, Budding and fission dynamics of two-component vesicles, The Journal of
    chemical physics 118 (17) (2003) 7937–7943.
    [121] J. C. Shillcock, R. Lipowsky, Equilibrium structure and lateral stress distribution of amphiphilic bilayers
    from dissipative particle dynamics simulations, The Journal of chemical physics 117 (10) (2002) 5048–
    5061.
    [122] G. M. Bristow, W. F. Watson, Cohesive energy densities of polymers. Part 1.-Cohesive energy densities
    of rubbers by swelling measurements, Trans. Faraday Soc. 54 (0) (1958) 1731–1741.
    [123] R. Groot, K. Rabone, Mesoscopic Simulation of Cell Membrane Damage, Morphology Change and
    Rupture by Nonionic Surfactants, Biophysical Journal 81 (2) (2001) 725 – 736.
    [124] A. Shrake, J. A. Rupley, Environment and exposure to solvent of protein atoms. Lysozyme and insulin,
    Journal of Molecular Biology 79 (2) (1973) 351–371.
    [125] S.-H. Wang, P.-L. Kuo, C.-T. Hsieh, H. Teng, Design of poly (acrylonitrile)-based gel electrolytes for
    high-performance lithium ion batteries, ACS applied materials & interfaces 6 (21) (2014) 19360–19370.

    無法下載圖示 校內:2024-08-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE