| 研究生: |
方家德 Fang, Chia-Te |
|---|---|
| 論文名稱: |
苉類螺旋烴之合成、結構分析及物性探討 Syntheses, Structural Analyses, and Physical Properties of Picene-Based Helical Arenes |
| 指導教授: |
吳耀庭
Wu, Yao-Ting |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學系 Department of Chemistry |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 106 |
| 中文關鍵詞: | 雙自由基性質 、多環芳香烴 、螺旋烴 、苉 、親電環化反應 |
| 外文關鍵詞: | Biradical character, Polycyclic aromatic hydrocarbons, Helicene, Picene, Electrophilic cyclization |
| 相關次數: | 點閱:129 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇論文主要探討具有雙自由基性質的螺旋烴化合物之合成、結構及物理性質分析。鑒於實驗室成功合成出的化合物1具有雙自由基性質且具有較高的穩定性。因此,本論文的合成部分將利用路易士酸親電環化的方式合成苉的主架構,接下來藉由官能基的修飾得到二茚并[2,1-f:1',2'-j]苉的螺旋分子骨架,進一步合成化合物1的一系列共軛衍生物。
成功製備的目標產物3首先經由Xray單晶繞射了解其分子的螺旋結構。我們以電子自旋共振光譜儀及變溫1H NMR實驗進行分析,成功證明其雙自由基的性質。此外,我們以1H NMR偵測其穩定度可高於20天。最後我們以UVVisNIR光譜得知化合物3的最大吸收波長為723奈米及利用循環伏安法得知其HOMOLUMO的能隙為1.56 ev。
然而,目標產物4/5/6/7卻無法成功製備。4及7進行苉骨架的合成時得到無法分離的混合物, 5及6同樣於此步驟得到非預期產物,因此無法持續進行合成達到目標產物。
The biradical compound with helical structure, which can exist in ambient conditions for 20 days stably, was synthesized in this work. The helical structure was observed by Xray. The property of the biradical is confirmed by electron paramagnetic resonance (EPR) and VT1H NMR measurements. The longest absorption wavelengths were observed at 723 nm in the UVVisNIR spectrum.The HOMOLUMO gap of 1.56 eV of the compound was observed by cyclic voltammetry.
[1] Kaiser, R. Angew. Chem. Int. Ed. Engl. 1968, 7, 345.
[2] Hofmann, A. W. Proc. R. Soc. Lond. 1855, 8, 1.
[3] Lazzeretti , P. Phys. Chem. Chem. Phys. 2004, 6, 217.
[4] Clar, E. The Aromatic Sextet; Wiley-VCH: London, 1972.
[5] Krygowski, T. M.; Ejsmont, K.; Stepień, B. T.; Cyrański, M. K.; Poater, J.; Solá, M. J. Org. Chem. 2004, 69, 6634.
[6] Tönshoff, C.; Bettinger, H. F. Angew. Chem. Int. Ed. 2010, 49, 4125.
[7] Anthony, J. E. Chem. Rev. 2006, 106, 5028.
[8] Barlier, V. S.; Schlenker, C. W.; Chin, S. W.; Thompson, M. E. Chem. Commun. 2011, 47, 3754.
[9] Odom, S. A.; Parkin, S. R.; Anthony, J. E. Org. Lett. 2003, 5, 4245.
[10] Pal, S. K., Setia, S., Avinash, B. S., & Kumar, S. Liq. Cryst. 2013, 40, 1769.
[11] Rohr, U.; Kohl, C.; Müllen; K.; van de Craats, A.; Warman, J. J. Mater. Chem. 2001, 11, 1789.
[12] Kroto, H. W. Nature 1987, 329, 529.
[13] Yadav, B. C.; Kumar, R. Int. J. Nanotechnol. Appl. 2008, 2, 15.
[14] Montgomery, L. K.; Huffman, J. C.; Jurczak, E. A.; Grendze, M. P. J. Am. Chem. Soc. 1986, 108, 6004.
[15] Abe, M. Chem. Rev. 2013, 113, 7011.
[16] (a) Döhnert, D.; Kouteckỳ, J. J. Am. Chem. Soc. 1980, 102, 1789. (b) Yamaguchi, K.; Kawakami, T.; Takano, Y.; Kitagawa, Y.; Yamashita Y.; Fujita, H. Int. J. Quantum Chem. 2002, 90, 370.
[17] (a) Motta, S. D.; Negri, F.; Fazzi, D.; Castiglioni, C.; Canesi, E. V. J. Phys. Chem. Lett. 2010, 1, 3334. (b) Lee, S.; Miao, F.; Phan, H.; Herng, T. S.; Ding, J.; Wu, J.; Kim, D. ChemPhysChem 2017, 18, 591.
[18] Ni, Y.; Lee, S.; Son, M.; Aratani, N.; Ishida, M.; Samanta, A.; Yamada, H.; Chang, Y. T.; Furuta, H.; Kim, D.; Wu, J. Angew. Chem. Int. Ed. 2016, 55, 2815.
[19] (a) Varnavski, O.; Abeyasinghe, N.; Aragó, J.; Serrano-Pérez, J. J.; Ortí, E.; Navarrete, J. T. L.; Takimiya, K.; Casanova, D.; Casado, J.; Goodson, T. J. Phys. Chem. Lett. 2015, 6, 1375. (b) Congreve, D. N., Lee, J., Thompson, N. J., Hontz, E., Yost, S. R., Reusswig, P. D., Bahlke, M. E.; Reineke, S.; Voorhis, T. V.; Baldo, M. A. Science 2013, 340, 334. (c) Zimmerman, P. M.; Zhang, Z.; Musgrave, C. B. Nat. Chem. 2010, 2, 648.
[20] (a) Nakano, M.; Champagne, B. J. Phys. Chem. Lett. 2015, 6, 3236. (b) Nakano, M.; Kishi, R.; Nitta, T.; Kubo, T.; Nakasuji, K.; Kamada, K.; Ohta, K.; Champagne, B.; Botek, E.; Yamaguchi, K. J. Phys. Chem. A 2005, 109, 885.
[21] Sun, Z.; Ye, Q.; Chi, C.; Wu, J. Chem. Soc. Rev. 2012, 41, 7857.
[22] Kubo, T.; Goto, Y.; Uruichi, M.; Yakushi, K.; Nakano, M.; Fuyuhiro, A.; Morita, Y.; Nakasuji, K. Chem. Asian J. 2007, 2, 1370.
[23] Konishi, A.; Hirao, Y.; Nakano, M.; Shimizu, A.; Botek, E.; Champagne, B.; Shiomi, D.; Sato, K.; Takui, T.; Matsumoto, K.; Kurata, H.; Kubo, T. J. Am. Chem. Soc. 2010, 132, 11021.
[24] Sun, Z.; Huang, K. W.; Wu, J. J. Am. Chem. Soc. 2011, 133, 11896.
[25] Rudebusch, G. E.; Zafra, J. L.; Jorner, K.; Fukuda, K.; Marshall, J. L.; Arrechea-Marcos, I.; Espejo, G. L.; Ortiz, R. P.; Gómez-García, C. J.; Zakharov, L. N.; Nakano, M.; Ottosson, H.; Casado, J.; Haley, M. M. Nat. Chem. 2016, 8, 753.
[26] (a) Drapeau, M. P.; Fabre, I.; Grimaud, L.; Ciofini, I.; Ollevier, T.; Taillefer, M. Angew. Chem. Int. Ed. 2015, 54, 10587. (b) Chen, Y.; Chen, Z.; Zhang, N.; Chen, J.; Zhang, X.; Yan, M. Eur. J. Org. Chem. 2016, 599.
[27] Martínez-Guajardo, G.; Donald, K. J.; Wittmaack, B. K.; Vazquez, M. A.; Merino, G. Org. Lett. 2010, 12, 4058.
[28] Ma, S.; Wang, L. J. Org. Chem. 1998, 63, 3497.
[29] Liu, J.; Narita, A.; Osella, S.; Zhang, W.; Schollmeyer, D.; Beljonne, D.; Feng, X.; Müllen, K. J. Am. Chem. Soc. 2016, 138, 2602.
[30] Li, C. W.; Wang, C. I.; Liao, H. Y.; Chaudhuri, R.; Liu, R. S. J. Org. Chem. 2007, 72, 9203.
[31] Tang, X. Y.; Shi, M. Eur. J. Org. Chem. 2010, 21, 4106.
[32] Nobusue, S.; Mukai, Y.; Fukumoto, Y.; Umeda, R.; Tahara, K.; Sonoda, M.; Tobe, Y. Chem. Eur. J. 2012, 18, 12814.
[33] Rahman, M. A.; Kitamura, T. Molecules 2009, 14, 3132.
[34] Higashino, T.; Ueda, A.; Yoshida, J.; Mori, H. Chem. Commun. 2017, 53, 3426.
[35] Kuhn, M.; Falk, F. C.; Paradies, J. Org. Lett., 2011, 13, 4100.
[36] Li, Z.; Liu, L.; Sun, H. M.; Shen, Q.; Zhang, Y. Dalton Trans. 2016, 45, 17739.
[37] Hashikawa, Y.; Murata, M.; Wakamiya, A.; Murata, Y. J. Am. Chem. Soc. 2017, 139, 16350.
[38] Stuart, D. R.; Bertrand-Laperle, M.; Burgess, K. M.; Fagnou, K. J. Am. Chem. Soc. 2008, 130, 16474.
[39] Huang, H.; Zhang, G.; Gong, L.; Zhang, S.; Chen, Y. J. Am. Chem. Soc. 2014, 136, 2280.
[40] Mandadapu, A. K.; Saifuddin, M.; Agarwal, P. K.; Kundu, B. Org. Biomol. Chem. 2009, 7, 2796.
[41] Jančařík, A.; Rybáček, J.; Cocq, K.; Vacek Chocholoušová, J.; Vacek, J.; Pohl, R.; Bednárová, L.; Fiedler, P.; Císařová, I.; Stará, I. G. Starý, I. Angew. Chem. 2013, 125, 10154.
校內:2022-08-01公開