簡易檢索 / 詳目顯示

研究生: 劉天培
Liu, Tien-Pei
論文名稱: 加強散熱的覆晶塑膠球柵陣列構裝之可靠度分析
Investigation of the Reliability in Thermally Enhanced Flip Chip PBGA Packages
指導教授: 吳俊煌
Wu, Gien-Huang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 130
中文關鍵詞: 有限元素分析凸塊加速溫度循環可靠度Coffin-Manson自然對流強制對流熱阻值
外文關鍵詞: finite element analysis, solder bump, accelerated temperature cycling, reliability, Coffin-Manson, free convection, force convection, thermal resistance
相關次數: 點閱:147下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文,利用有限元素分析商用軟體ANSYS12.0建立一精確三維有限元素分析模型。加強散熱的Flip -Chip PBGA構裝是由基本型Flip -Chip PBGA進行封膠填充再於上方黏結鋁散熱板接著構裝於印刷電路板(PCB)上。在熱機械行為分析方面,針對加強散熱的覆晶塑膠球柵陣列構裝在加速溫度循環下研究凸塊之可靠度。在本模擬中,所有凸塊與錫球皆為非線性黏塑,基於Anand’s 基本方程式材料性質與時間、溫度是相依的,其它材料皆視為彈性。而修正型Coffin-Manson公式是最為廣泛用來預測凸塊之可靠度,以探討凸塊之熱機械行為。考慮不同的幾何、材料參數來分析凸塊之可靠度。
    在熱傳分析方面晶片產生發熱量為3W,周圍大氣溫度為50℃。本文探討覆晶塑膠球柵陣列構裝在自然對流與強制對流的環境情況下風速由0~2m/s。比較不同構裝體的熱阻值,經由熱阻值便可以預測構裝體散逸熱量的情形。

    This paper uses the commercial software ANSYS12.0 to establish an accurate three-dimensional finite element analysis model. The thermally enhanced flip chip plastic ball grid array (FC-PBGA) package is a basic FC-PBGA package that is overmolded with molding compound, after which an aluminum heat spreader is adhered to the top of the molding compound and subsequently mounted on a PCB. The thermal-mechanical behavior analysis was performed in order to investigation, the reliability of the solder bump in thermally enhanced FC-PBGA packages under accelerated temperature cycling conditions. In the simulation, all the solder bumps and the solder balls were modeled with nonlinear viscoplastic time and temperature dependent material properties based on Anand's constitutive equation, and other materials are treated as elasticities. Solder bump reliability is predicted by the widely accepted modified Coffin-Manson equation, the thermo-mechanical behavior of the solder bumps is presented. For solder bump reliability is analyzed by considering various design parameters of the polymer-based materials and the thermal enhancement components.
    The heat transfer analysis, All simulation are based on 3W power to the die and 50℃ambient temperature. This study are discussed FC-PBGA packages under the natural convection and the force convection environment with freestream velocities from 0 to 2m/s. Compared with different the thermal resistance of packages, The way of thermal resistance can be predicted the packages dissipation.

    中文摘要 I Abstract II 誌謝 IV 目錄 V 表目錄 VIII 圖目錄 IX 符號說明 XII 第一章 緒論 1 1-1 前言 1 1-2 IC晶片製程 2 1-2-1晶圓製造 2 1-2-2 IC封裝[1] 3 1-3 IC元件的介紹[1] 4 1-3-1 DIP 4 1-3-2 SOP 5 1-3-3 QFP 6 1-3-4 BGA 6 1-3-5 FC 7 1-4 FC-PBGA元件的介紹 8 1-4-1凸塊接點製作 8 1-4-2底膠填充 11 1-4-3固態封模 13 1-4-4基板[1] 13 1-5 研究動機與目的 16 1-6 文獻回顧 17 1-7 本文架構 19 第二章 理論分析 20 2-1 彈性理論分析[6] 20 2-2線性分析與非線性分析理論 24 2-2-1彈塑性體的變形理論 25 2-2-2非線性收斂準則[10] 26 2-2-3直接疊代法 26 2-2-4牛頓-瑞佛森法(Newton-Raphson Method) 27 2-3 黏彈材料力學模型─Maxwell模型[11] 29 2-4 黏塑材料力學模型─Anand模型[13] 32 2-5 電子元件封裝之熱傳與散熱分析 37 2-5-1 熱傳導與熱對流 38 2-6 疲勞壽命理論 40 2-6-1 低循環疲勞壽命 41 第三章 模型建立與分析 46 3-1 加強散熱的Flip -Chip PBGA構裝 46 3-2 ANSYS有限元素分析模擬 48 3-2-1模型基本假設 48 3-2-2前處理 49 3-2-3求解模式 55 3-2-4歷時後處理 57 第四章 模擬分析結果與討論 58 4-1應力與應變分析 58 4-1-1比較不同Flip -Chip PBGA構裝體凸塊的可靠度 59 4-1-2參數化分析 59 4-2熱傳分析 62 4-2-1 比較不同構裝體的溫度分佈分析 62 4-2-2 比較不同構裝體的熱阻值分析 63 4-3 田口實驗分析 64 4-3-1實驗設計 64 4-3-2實驗結果 65 4-3-3最佳設計組合與確認實驗 66 4-4 模擬結果與實驗結果比較 67 第五章 結論與未來研究方向 68 5-1 結論 68 5-2 未來研究方向 70 參考文獻 125 自述 130

    1. 鐘文仁和陳佑任. (2010). IC封裝製程與CAE應用, 全華圖書股份有限公司
    2. http://en.wikipedia.org
    3. Suryanarayana, D., Hsiao, R., Gall, T. P. and McCreary, J. M. (1990). Flip-chip Solder Bump Fatigue Life Enhanced by Polymer Encapsulation, Proc. 40th Electronic Component Technical Conference, 1: 338-344.
    4. Pang, H. L., Tan, T.I., Lim, G.Y. and Wong, C.L. (1997). Thermal Stress Analysis of Direct Chip Attach Electronic Packaging Assembly, IEEE Electronic Packaging Technology Conference: 170-176.
    5. Scott, F. Popelar (1999). A Parametric Study of Flip Chip Reliability Base on Solder Fatigue Modeling, IEEE Int’l Electronics Manufacturing Technology Symposium: 299-307.
    6. Lu Hua, Bailey, C. and Cross, M. (2000).Reliability Analysis of Flip Chip Designs Via Computer Simulation, Transactions of the ASME,122: 214-219.
    7. Shim, K. W. and Lo, W. Y. (2006). Solder Fatigue Modeling of Flip-Chip Bumps in Molded Packages, IEEE International Electronic Manufacturing Technology: 109-114.
    8. Lee, T. Y. (2000). An Investigation of Thermal Enhancement on Flip Chip Plastic BGA Packages Using CFD Tool, IEEE Transactions on Components and Packaging Technologies, 23(3): 481-489.
    9. Hironori Matsushima, Shinji Baba, Yoshihiro Tomita, Masaki Watanabe, Eiji Hayashi, Yoshitaka Takemoto. (1998). Thermally Enhanced Flip-chip BGA with Organic Substrate, IEEE Electronic Components and Technology Conference: 685-691.
    10. ANSYS 12.0 Online Reference
    11. 張勳承 (2003). 田口方法應用與覆晶構錫球的熱應力分析. 國立成功大學碩士論文
    12. Hao,X.,Qin L., Yan, D. and Liu, S. (2003).Thermal-Mechanical Stress And Fatigue Failure Analysis Of A PBGA. ICEPT2003: 438-442.
    13. Masazumi, A. (1999). Characterization of chip scale packaging materials. Microelectronics Reliability 39: 1365-1377
    14. Ellison, G.N. (1989). Thermal Computations for Electronic Equipment. Van Nostrand Reinhole Company
    15. Mertol, A. (1996). Thermal Performance Comparison of High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array(EPBGA) Packages. IEEE Transactions on Components, Packaging and Manufacturing Technology-Part B, 19(2):427-443.
    16. Knecht, S. and Fox, L. R. (1990). Constitutive Relation and Creep-Fatigue Life Model for Eutectic Tin-Lead Solder. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 13(2): 424-733.
    17. Coffin, L3 F3, Jr. (1954). A Study of Effects of Cyclic Thermal Stress on a Ductile Metal. Transactions ASME, 76: 931-950.
    18. Engelmaier, W. (1983). Fatigue Life of Leadless Chip Carrier Solder Joints During Power Cycling. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 6(3): 52- 57.
    19. Solomon, H. D. (1986). Fatigue of Solder. IEEE Transactions on Components, Hybrids and Manufacturing Technology, 9(4): 52-57.
    20. Biswas, K., Liu, S., Zhang, X., Chai, TC. (2008). Effects of detailed substrate modeling and solder layout design on the and level solder joint reliability for the large die FCBGA, IEEE International Conference on Thermal, Mechanical and Multiphysics Simulation and Experiments in Micro-Electronics and Micro-Systems, EuroSimE: 1-7.
    21. Akay, Hasan U., Liu, Yan, Rassaian, Mostafa. (2003). Simplification of Finite Element Models for Thermal Fatigue Life Prediction of PBGA Packages, ASME Journal of Electronic Packaging, 125: 347-353.
    22. Ramakrishna, K. and Lee, T-Y. (2002). Prediction of Thermal Performance of Flip Chip-Plastics Ball Grid Array(FC-PBGA) Packages: Effect of Substrate Physical Design, IEEE Inter Society Conference on Thermal Phenomena: 528-537.
    23. Zahn, Bret A. (1999). Optimizing Cost and Thermal Performance: Rapid Prototyping of a High Pin Count Cavity-Up Enhanced Plastic Ball Grid Array (EPBGA) Packages, IEEE Semiconductor Thermal Symposium: 133-141.
    24. JEDEC STANDARD, JESD22 A105-B.
    25. Mertol , A. (2000). Application of the Taguchi method to chip scale package (CSP) design, IEEE Transactions on Advanced Packaging, 23(2): 266-276.
    26. Jen, Y. M., Fang, C. K and Yeh, Y. H. (2006). Effect of Size of Lid-Substrate Adhesive on Reliability of Solder Balls in Thermally Enhanced Flip Chip PBGA Packages, IEEE Transactions on Components and Packaging Technologies, 29(4): 718-726.
    27. Chen, K. M., Houng, K. H and Chiang, K. N. (2006). Thermal resistance analysis and validation of flip chip PBGA packages, Microelectronics Reliability: 440-448.

    下載圖示 校內:立即公開
    校外:2012-08-30公開
    QR CODE