簡易檢索 / 詳目顯示

研究生: 高樹緯
Kao, Shu-Wei
論文名稱: 丙型肝炎病毒鞘蛋白(HCVcore)狹持異構核糖核蛋白H1(hnRNPH1)調節病毒複製,經由操控微小核糖核酸-16(microRNA-16)進程以及內部核糖體進入位點(IRES)活性 。
The hepatitis C virus core protein hijacks cellular hnRNPH1 to modulate viral replication through regulations of microRNA-16 processing and internal ribosomal entry site activity.
指導教授: 王憲威
Wang, Shainn-Wei
學位類別: 碩士
Master
系所名稱: 醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 62
中文關鍵詞: 丙型肝炎病毒鞘蛋白異構核糖核蛋白H1微小核糖核酸進程微小核糖核酸-16脂肪酸合成酶內部核糖體進入位活性
外文關鍵詞: HCV, HCVcore, hnRNPH1, miRNA processing, miR-16, FASN, IRES activity
相關次數: 點閱:124下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 丙型肝炎病毒(HCV)感染肝細胞和免疫細胞相當地倚靠HCV鞘蛋白(HCVcore)和細胞蛋白間的交互作用,並用此交互作用來建立慢性感染及致病機轉。我們先前的研究指出在HCV複製過程中,HCVcore會吸引異構核糖核蛋白H1(hnRNPH1)並在細胞質中形成有重要功能的顆粒或脂肪滴。從肝細胞瘤Huh7、cHuh7.5和帶有HCV亞基因組複製子(SGR)或全基因組複製子(FGR)的cHuh7.5中分離出hnRNPH1複合物,發現hnRNPH1可能參與微小RNA(miRNA)的調節,以及與病毒RNA一起調控病毒基因組的複製。相對於不帶有HCVcore的SGR細胞,FGR細胞中的hnRNPH1複合體與HCVcore之交互作用能促使聚集更多負責miRNA生合成的蛋白,並造成hnRNPH1複合體中的miRNA數量及種類有所不同。此外,減益hnRNPH1的表現會衰減FGR或SGR的複製水平,暗示著hnRNPH1是促進複製子複製的因子且不需依賴HCVcore。雖然hnRNPH1能單獨增強SGR複製子複製能力,但在SGR細胞中共同過度表達HCVcore及hnRNPH1或單獨過度表達HCVcore會降低SGR複製子水平和其轉譯產物的產量。這強烈指出hnRNPH1可以通過增強病毒基因組複製水平來協助病毒複製,然而hnRNPH1和/或HCVcore可能通過尚未釐清的轉錄後修飾機制來調控HCV的複製。在本篇研究中我們假設hnRNPH1 / HCVcore複合物可以通過調節miRNA生合成或控制蛋白質轉譯來影響HCV複製,並探討miR-16的成熟與活性分析,以及探討hnRNPH1/HCVcore是否能調控CAP和IRES介導的蛋白質轉譯。經由比較FGR和SGR細胞中hnRNPH1複合體上的miRNA,我們發現了44種miRNA能與hnRNPH1/HCVcore複合物有交互作用,並從中挑選miR-16當作候選目標。在報導細胞株中透過雙螢光素酶miRNA標靶測定實驗,我們發現mir-16-1會結合在HCV-1b基因組中核苷酸707-730位置,也會與細胞脂肪酸合成酶(fasn)mRNA的3'UTR結合。有趣的是, HCVcore能加快mir16-1的成熟進程,並在細胞質中保留更多的hnRNPH1。另外,過度表達hnRNPH1會提升CAP和IRES介導的轉譯活性,但此現象會被HCVcore調降。但單獨表達HCVcore對CAP或IRES介導的轉譯活性並不會有影響。我們還意外地發現hnRNPH1參與的一個非典型CAP介導轉譯機制:在沒有IRES的CAP介導報導系統上的能忽略首個報導基因的終止密碼子而轉譯出下一個報導基因。總歸來說,這篇研究表明hnRNPH1是個多項功能調控因子,並與HCVcore影響了miRNA的生合成以及轉譯調控,進而在HCV複製和致病機制中有關鍵的影響。

    Hepatitis C virus (HCV) invades hepatocytes and immune cells, and relies heavily the interactions of HCV core protein (HCVcore) with many cellular factors to establish chronic infection and pathogenesis. We have previously shown that HCVcore attracts the heterogeneous nuclear ribonucleoprotein H1 (hnRNPH1) to form predominant cytoplasmic granules and/or lipid droplets during HCV replication. Isolation of the hnRNPH1-complexes from hepatoma 7 (Huh7)-derived cell lines, including cHuh7.5 and its derivatives that harbors HCV subgenome (cHuh7.5-SGR) or full-genome replicon (cHuh7.5-FGR), reveals their possible association with microRNA (miRNA) regulation and viral RNA (vRNA) for genome replication in the presence or absence of HCVcore in cis. The hnRNPH1 complex that is associated with HCVcore from FGR cells, in contrast to without in SGR cells, concentrates more components that are essential for microRNA (miRNA) biogenesis and shows differential miRNAs in numbers and contents. In addition, hnRNPH1-knockdown in contrast to overexpression inversely attenuates the level of replicating FGR or SGR, indicating that hnRNPH1 is required to promote replicon replication independent of HCVcore expression in cis or not. However, in SGR cells, expression of HCVcore in trans with or without ectopic hnRNPH1 demotes both the levels of SGR genome and translational products, albeit that hnRNPH1 alone can promote the level of SGR genome. This highly suggested that hnRNPH1 can assist viral replication through enhancing viral genome level, yet the levels of hnRNPH1 and/or HCVcore may have critical modulatory effect to HCV replication through unclarified posttranscriptional controls. To demonstrate that the hypothetic hnRNPH1/HCVcore complex can modulate HCV replication through miRNA regulation and/or translational control, this study validates an associating miR-16 precursor for its maturation and functional activities as well as the roles of hnRNPH1/HCVcore in CAP- and IRES-mediated translational control through reporter assays. We report that 44 miRNA candidates could be statistically validated to associate with the hnRNPH1/HCVcore complex by a pair-wise comparison of miRNAs that were identified from the hnRNPH1 complex of FGR and SGR cells through an inferential test (one-way ANOVA). A mir-16-1 from 44 hnRNPH1/HCVcore-associated miRNA candidates was found to targets HCV-1b genome at nt position 707-730 and cellular fatty acid synthase (fasn) mRNA at 3’UTR as determined in a transient reporter cell line by a dual-luciferase miRNA targeting assay. Interestingly, HCVcore was found to promote mir-16-1 processing from primary to mature form and retained more hnRNPH1 in the cytoplasmic fraction that may be crucial for miRNA processing. In addition, ectopic hnRNPH1 promoted CAP- and IRES-dependent translation and could be down-modulated by HCVcore as determined in another pool of transient reporter cell for dual-luciferase assay. However, HCVcore alone did not show substantial effect to CAP- or IRES- mediated translational activities in comparison to mock vector control. We also unexpectedly identify an hnRNPH1-mediated non-canonical CAP-translation machinery to bypass the first report’s stop codon for translation of next reporter gene without IRES. Collectively, this study supports that hnRNPH1 is a multifunctional modulator with HCVcore to modulate at least miRNA biogenesis and translational control, which in turns may have critical effect to HCV replication and pathogenesis.

    Index 中文摘要 I Abstract II Acknowledgements IV Index V Figure Index IX Abbreviations XII Introduction - 1 - HCV pathogenesis and epidemiology - 1 - Current therapeutics and concerns - 1 - HCV replication and replicon-containing cell culture system - 1 - HCV replication complex in lipid droplet and ER-associated membrane web - 2 - Novel interaction and putative role of HCVcore and hnRNPH1 - 2 - Functional role of hnRNPH1 in mRNA transport and metabolism - 3 - MicroRNA biogenesis and nomenclature - 3 - HCVcore and hnRNPH1 has a role in miRNA processing - 4 - Inference and questions to be answered in this study - 5 - Materials and Methods - 6 - Reagents - 6 - HCV replicon cell lines - 6 - Cell culture - 7 - DNA plasmids, microRNAs, and transfection - 7 - Pathway enrichment analysis of the hypothetic hnRNPH1/HCVc complex-associated miRNAs by via DIANA-mirPath analysis - 8 - Dual-Luciferase microRNA targeting reporter plasmids construction and cell line establishment - 8 - The dual-luciferase HCV IRES reporter (pRF-HCV IRES377) plasmid construction and reporter cell line establishment - 9 - Dual-Luciferase Assay (DLA) kit - 10 - Quantitative Real-Time reverse transcription Polymerase Chain Reaction system (qRT-PCR) - 10 - Sodium Dodecyl Sulfate (SDS) Polyacrylamide Gel Electrophoresis (PAGE) and Western Blot analysis - 12 - Statistical analysis - 12 - Results - 13 - Subsets of 1049, 1182, and 1150 miRNAs are respectively associated with hnRNPH1 complexes deriving from cHuh7.5 cells, cHuh7.5/SGR, and cHuh7.5/FGR cells - 13 - 89 miRNAs are significantly modulated by the hnRNPH1 complex of each cell line, and 44 of them are likely associated with the hnRNPH1/HCVcore complex - 14 - Nineteen of the hnRNPH1/HCVcore complex-associated 44 miRNAs may target HCV-1b con1 genome, as predicted by Virus’ miRNA Target (ViTa) database - 15 - DIANA-mirPath v2.0 analysis of the hnRNPH1/HCVcore complex-associated 44 miRNAs suggests their criticalness in fatty acid biosynthesis - 15 - Ectopic HCVcore promotes mir-16-1 processing from primary to mature form as determined by reverse-transcription real-time PCR - 16 - HCVcore has potential to retain more hnRNPH1 in the cytoplasmic fraction for miRNA processing - 17 - MiRNA-16-5p targets HCV genome at position 707-730 and fasn mRNA at 3’UTR as determined by a dual-luciferase miRNA targeting assay - 18 - Ectopic hnRNPH1 promotes CAP- and IRES-dependent translation and may be modulated by HCVcore as determined by a dual-luciferase reporter assay - 20 - Discussion - 22 - References - 29 - Supporting Information - 38 - Table - 38 - Figure - 43 - Supplementary Figure - 57 - Supplementary Table - 60 - Curriculum Vitae - 63 - Figure Index Table - 38 - Table 1. Next Generation Sequencing (NGS) identification and comparative miRNA species analysis of the hnRNPH1 complexes deriving from cHuh7.5, cHuh7.5/SGR, and cHuh7.5/FGR cells - 38 - Table 2. Classification of identified miRNAs that are statistically validated to be significantly or non-significantly modulated by the hnRNPH1-containing miRNA processor from cHuh7.5/FGR cells in relevant to that from cHuh7.5/SGR and cHuh7.5 cells. - 39 - Table 3. The list of 19 miRNA candidates that could be processed by the hypothetic HCVcore/hnRNPH1 complex and predicted to target HCV viral genome - 40 - Table 4. Pathway enrichment analysis of 44 miRNA candidates that may be modulated by the hypothetic hnRNPH1/HCVc complex by DIANA-mirPath v2.0 - 41 - Table 5. The miR-16-5p candidate, deriving from the miR-15 family that are processed from the precursor mir-16-1, may target HCV genome and cellular mRNAs in fatty acid biogenesis as predicted by several miRNA databases. - 42 - Figure - 43 - Figure 1. Cross comparison of the Vita-predicted HCV-targeting miRNAs and the 89 validated miRNAs that differentially present in the hnRNPH1-containing miRNA processor among cHuh7.5, cHuh7.5/FGR, and cHuh7.5/SGR cells. - 43 - Figure 2. Hypothesis of the HCVcore/hnRNAPH1 complex in modulating microRNA processing and HCV multiplication. - 44 - Figure 3. Ectopic HCVcore191 expression reduces the level of primary mir-16-1 but enhances that of miR-16-5p in cHuh7.5 cells. - 45 - Figure 4. The presence of HCVcore during HCV replication or ectopic expression is critical to concentrate hnRNPH1 to the cytoplasm. - 46 - Figure 5. The dual-luciferase reporter vector (pmirGLO) used for miRNA targeting assay. - 47 - Figure 6. The miR-16-5p targets the core sequence of the HCV-con1 genome at position 707-730 - 48 - Figure 7. A miR-16-5p-mimic affect the activity of a reporter with a predicted miR-16-5p targeting site from HCV con1 genome at position 707-730. - 49 - Figure 8. A hsa-miR-16-5p inhibitor did not affect the activity of a reporter with a predicted miR-16-5p targeting site from HCV con1 genome at position 707-730 - 50 - Figure 9. Ectopic HCVcore reprograms fasn but not oxsm expression - 51 - Figure 10. The fasn mRNA contains three functional miR-16-5p targeting sites - 52 - Figure 11. Construction of a dual-luciferase reporter vector (pRF) for monitoring HCV IRES activity - 53 - Figure 12. Effects of ectopic HCVcore/hnRNPH1 on CAP and HCV IRES regulation by dual-luciferase reporter assay. - 54 - Figure 13. A non-canonical translation control of hnRNPH1 may occur from Cap-dependent reporters - 55 - Supplementary Figure - 56 - Supplementary Figure 1. Workflow and algorithms of SOLiDTM sequencing of small RNAs that are associated with hnRNPH1 complexes from cHuh7.5, cHuh7.5/SGR, and cHuh7.5/FGR cells. - 57 - Supplementary Figure 2. The miRNAs (miR-15, -16, -195, -424, -497) in the family of miR-15 contain the same seed region, which may have similar functional compensation to each other. - 58 - Supplementary Table - 59 - Supplementary Table 1A. The list of eighty-nine miRNAs that are statistically validated to be significantly (≥ 1.5-fold) modulated by the hnRNPH1-containing microRNA processor from cHuh7.5/FGR cells in relevant to that from cHuh7.5/SGR and cHuh7.5 cells - 59 - Supplementary Table 1B. The list of eighty-nine miRNAs that are statistically validated to be non-significantly (< 1.5-fold) modulated by the hnRNPH1-containing microRNA processor from cHuh7.5/FGR cells in relevant to that from cHuh7.5/SGR and cHuh7.5 cells - 60 - Supplementary Table 2. The significant involvement of mirPath v2.0-predicted four miRNAs and their target genes in fatty acid biosynthesis - 61 -

    1. Messina JP, Humphreys I, Flaxman A, Brown A, Cooke GS, Pybus OG, Barnes E. 2015. Global distribution and prevalence of hepatitis C virus genotypes. Hepatology 61:77-87.
    2. Tang LS, Masur J, Sims Z, Nelson A, Osinusi A, Kohli A, Kattakuzhy S, Polis M, Kottilil S. 2016. Safe and effective sofosbuvir-based therapy in patients with mental health disease on hepatitis C virus treatment. World J Hepatol 8:1318-1326.
    3. Lam BP, Jeffers T, Younoszai Z, Fazel Y, Younossi ZM. 2015. The changing landscape of hepatitis C virus therapy: focus on interferon-free treatment. Therap Adv Gastroenterol 8:298-312.
    4. Boonstra A, van der Laan LJ, Vanwolleghem T, Janssen HL. 2009. Experimental models for hepatitis C viral infection. Hepatology 50:1646-1655.
    5. Lee JW, Liao PC, Young KC, Chang CL, Chen SS, Chang TT, Lai MD, Wang SW. 2011. Identification of hnRNPH1, NF45, and C14orf166 as novel host interacting partners of the mature hepatitis C virus core protein. J Proteome Res 10:4522-4534.
    6. Wolk B, Buchele B, Moradpour D, Rice CM. 2008. A dynamic view of hepatitis C virus replication complexes. J Virol 82:10519-10531.
    7. Boni S, Lavergne JP, Boulant S, Cahour A. 2005. Hepatitis C virus core protein acts as a trans-modulating factor on internal translation initiation of the viral RNA. J Biol Chem 280:17737-17748.
    8. Kang SM, Choi JK, Kim SJ, Kim JH, Ahn DG, Oh JW. 2009. Regulation of hepatitis C virus replication by the core protein through its interaction with viral RNA polymerase. Biochem Biophys Res Commun 386:55-59.
    9. Moriishi K, Matsuura Y. 2012. Exploitation of lipid components by viral and host proteins for hepatitis C virus infection. Front Microbiol 3:54.
    10. Scheel TK, Rice CM. 2013. Understanding the hepatitis C virus life cycle paves the way for highly effective therapies. Nat Med 19:837-849.
    11. Sun LJ, Li SC, Zhao YH, Yu JW, Kang P, Yan BZ. 2013. Silent information regulator 1 inhibition induces lipid metabolism disorders of hepatocytes and enhances hepatitis C virus replication. Hepatol Res 43:1343-1351.
    12. Syed GH, Amako Y, Siddiqui A. 2010. Hepatitis C virus hijacks host lipid metabolism. Trends Endocrinol Metab 21:33-40.
    13. Mankouri J, Walter C, Stewart H, Bentham M, Park WS, Heo WD, Fukuda M, Griffin S, Harris M. 2016. Release of Infectious Hepatitis C Virus from Huh7 Cells Occurs via a trans-Golgi Network-to-Endosome Pathway Independent of Very-Low-Density Lipoprotein Secretion. J Virol 90:7159-7170.
    14. Afzal MS, Zaidi NU, Dubuisson J, Rouille Y. 2014. Hepatitis C virus capsid protein and intracellular lipids interplay and its association with hepatic steatosis. Hepat Mon 14:e17812.
    15. Dansako H, Hiramoto H, Ikeda M, Wakita T, Kato N. 2014. Rab18 is required for viral assembly of hepatitis C virus through trafficking of the core protein to lipid droplets. Virology 462-463:166-174.
    16. Lee JY, Acosta EG, Stoeck IK, Long G, Hiet MS, Mueller B, Fackler OT, Kallis S, Bartenschlager R. 2014. Apolipoprotein E likely contributes to a maturation step of infectious hepatitis C virus particles and interacts with viral envelope glycoproteins. J Virol 88:12422-12437.
    17. Biswas A, Treadaway J, Tellinghuisen TL. 2016. Interaction between Nonstructural Proteins NS4B and NS5A Is Essential for Proper NS5A Localization and Hepatitis C Virus RNA Replication. J Virol 90:7205-7218.
    18. David N, Yaffe Y, Hagoel L, Elazar M, Glenn JS, Hirschberg K, Sklan EH. 2015. The interaction between the hepatitis C proteins NS4B and NS5A is involved in viral replication. Virology 475:139-149.
    19. Gupta G, Song J. 2016. C-Terminal Auto-Regulatory Motif of Hepatitis C Virus NS5B Interacts with Human VAPB-MSP to Form a Dynamic Replication Complex. PLoS One 11:e0147278.
    20. Uchida M, Hino N, Yamanaka T, Fukushima H, Imanishi T, Uchiyama Y, Kodama T, Doi T. 2002. Hepatitis C virus core protein binds to a C-terminal region of NS5B RNA polymerase. Hepatol Res 22:297-306.
    21. Shanmugam S, Saravanabalaji D, Yi M. 2015. Detergent-resistant membrane association of NS2 and E2 during hepatitis C virus replication. J Virol 89:4562-4574.
    22. Shanmugam S, Yi M. 2013. Efficiency of E2-p7 processing modulates production of infectious hepatitis C virus. J Virol 87:11255-11266.
    23. Atoom AM, Jones DM, Russell RS. 2013. Evidence suggesting that HCV p7 protects E2 glycoprotein from premature degradation during virus production. Virus Res 176:199-210.
    24. Stapleford KA, Lindenbach BD. 2011. Hepatitis C virus NS2 coordinates virus particle assembly through physical interactions with the E1-E2 glycoprotein and NS3-NS4A enzyme complexes. J Virol 85:1706-1717.
    25. Moon J, Kaowinn S, Cho IR, Min do S, Myung H, Oh S, Kaewpiboon C, Kraemer OH, Chung YH. 2016. Hepatitis C virus core protein enhances hepatocellular carcinoma cells to be susceptible to oncolytic vesicular stomatitis virus through down-regulation of HDAC4. Biochem Biophys Res Commun 474:428-434.
    26. Aizawa S, Okamoto T, Sugiyama Y, Kouwaki T, Ito A, Suzuki T, Ono C, Fukuhara T, Yamamoto M, Okochi M, Hiraga N, Imamura M, Chayama K, Suzuki R, Shoji I, Moriishi K, Moriya K, Koike K, Matsuura Y. 2016. TRC8-dependent degradation of hepatitis C virus immature core protein regulates viral propagation and pathogenesis. Nat Commun 7:11379.
    27. Suzuki R, Saito K, Matsuda M, Sato M, Kanegae Y, Shi G, Watashi K, Aizaki H, Chiba J, Saito I, Wakita T, Suzuki T. 2016. Single-domain intrabodies against hepatitis C virus core inhibit viral propagation and core-induced NFkappaB activation. J Gen Virol 97:887-892.
    28. McCaffrey K, Boo I, Owczarek CM, Hardy MP, Perugini MA, Fabri L, Scotney P, Poumbourios P, Drummer HE. 2016. An optimized hepatitis C virus E2 glycoprotein core adopts a functional homodimer that efficiently blocks virus entry. J Virol doi:10.1128/JVI.01668-16.
    29. Zhao F, Zhao T, Deng L, Lv D, Zhang X, Pan X, Xu J, Long G. 2017. Visualizing the Essential Role of Complete Virion Assembly Machinery in Efficient Hepatitis C Virus Cell-to-Cell Transmission by a Viral Infection-Activated Split-Intein-Mediated Reporter System. J Virol 91.
    30. Yang CH, Wang SW. 2015. The role of HCV core/hnRNPH1 interaction in modulating Hepatitis C virus replication and microRNA regulation. Master. National Cheng Kung University, Tainan.
    31. Matlin AJ, Clark F, Smith CW. 2005. Understanding alternative splicing: towards a cellular code. Nat Rev Mol Cell Biol 6:386-398.
    32. Licatalosi DD, Mele A, Fak JJ, Ule J, Kayikci M, Chi SW, Clark TA, Schweitzer AC, Blume JE, Wang X, Darnell JC, Darnell RB. 2008. HITS-CLIP yields genome-wide insights into brain alternative RNA processing. Nature 456:464-469.
    33. Siomi MC, Eder PS, Kataoka N, Wan L, Liu Q, Dreyfuss G. 1997. Transportin-mediated nuclear import of heterogeneous nuclear RNP proteins. J Cell Biol 138:1181-1192.
    34. Van Dusen CM, Yee L, McNally LM, McNally MT. 2010. A glycine-rich domain of hnRNP H/F promotes nucleocytoplasmic shuttling and nuclear import through an interaction with transportin 1. Mol Cell Biol 30:2552-2562.
    35. Ahlquist P, Noueiry AO, Lee WM, Kushner DB, Dye BT. 2003. Host factors in positive-strand RNA virus genome replication. J Virol 77:8181-8186.
    36. Ariumi Y. 2014. Multiple functions of DDX3 RNA helicase in gene regulation, tumorigenesis, and viral infection. Front Genet 5:423.
    37. Ariumi Y, Kuroki M, Abe K, Dansako H, Ikeda M, Wakita T, Kato N. 2007. DDX3 DEAD-box RNA helicase is required for hepatitis C virus RNA replication. J Virol 81:13922-13926.
    38. Czech B, Hannon GJ. 2011. Small RNA sorting: matchmaking for Argonautes. Nat Rev Genet 12:19-31.
    39. Huang S, Xie Y, Yang P, Chen P, Zhang L. 2014. HCV core protein-induced down-regulation of microRNA-152 promoted aberrant proliferation by regulating Wnt1 in HepG2 cells. PLoS One 9:e81730.
    40. Waggoner SN, Hall CH, Hahn YS. 2007. HCV core protein interaction with gC1q receptor inhibits Th1 differentiation of CD4+ T cells via suppression of dendritic cell IL-12 production. J Leukoc Biol 82:1407-1419.
    41. Wang Y, Kato N, Jazag A, Dharel N, Otsuka M, Taniguchi H, Kawabe T, Omata M. 2006. Hepatitis C virus core protein is a potent inhibitor of RNA silencing-based antiviral response. Gastroenterology 130:883-892.
    42. Polyak SJ. 2013. The circulatory orbit of micro-RNAs in hepatitis C. Hepatology 58:847-849.
    43. Yamasaki T, Onishi M, Kim EJ, Cerutti H, Ohama T. 2016. RNA-binding protein DUS16 plays an essential role in primary miRNA processing in the unicellular alga Chlamydomonas reinhardtii. Proc Natl Acad Sci U S A 113:10720-10725.
    44. Fareh M, Yeom KH, Haagsma AC, Chauhan S, Heo I, Joo C. 2016. TRBP ensures efficient Dicer processing of precursor microRNA in RNA-crowded environments. Nat Commun 7:13694.
    45. Connerty P, Bajan S, Remenyi J, Fuller-Pace FV, Hutvagner G. 2016. The miRNA biogenesis factors, p72/DDX17 and KHSRP regulate the protein level of Ago2 in human cells. Biochim Biophys Acta 1859:1299-1305.
    46. Higuchi T, Todaka H, Sugiyama Y, Ono M, Tamaki N, Hatano E, Takezaki Y, Hanazaki K, Miwa T, Lai S, Morisawa K, Tsuda M, Taniguchi T, Sakamoto S. 2016. Suppression of MicroRNA-7 (miR-7) Biogenesis by Nuclear Factor 90-Nuclear Factor 45 Complex (NF90-NF45) Controls Cell Proliferation in Hepatocellular Carcinoma. J Biol Chem 291:21074-21084.
    47. Blight KJ, McKeating JA, Rice CM. 2002. Highly permissive cell lines for subgenomic and genomic hepatitis C virus RNA replication. J Virol 76:13001-13014.
    48. Lin CC, Tsai P, Sun HY, Hsu MC, Lee JC, Wu IC, Tsao CW, Chang TT, Young KC. 2014. Apolipoprotein J, a glucose-upregulated molecular chaperone, stabilizes core and NS5A to promote infectious hepatitis C virus virion production. J Hepatol 61:984-993.
    49. Vlachos IS, Kostoulas N, Vergoulis T, Georgakilas G, Reczko M, Maragkakis M, Paraskevopoulou MD, Prionidis K, Dalamagas T, Hatzigeorgiou AG. 2012. DIANA miRPath v.2.0: investigating the combinatorial effect of microRNAs in pathways. Nucleic Acids Res 40:W498-504.
    50. Hsu PW, Lin LZ, Hsu SD, Hsu JB, Huang HD. 2007. ViTa: prediction of host microRNAs targets on viruses. Nucleic Acids Res 35:D381-385.
    51. Gao LL, Li M, Wang Q, Liu SA, Zhang JQ, Cheng J. 2015. HCBP6 Modulates Triglyceride Homeostasis in Hepatocytes Via the SREBP1c/FASN Pathway. J Cell Biochem 116:2375-2384.
    52. Wang J, Zhang X, Shi J, Cao P, Wan M, Zhang Q, Wang Y, Kridel SJ, Liu W, Xu J, Zhang Q, Sui G. 2016. Fatty acid synthase is a primary target of MiR-15a and MiR-16-1 in breast cancer. Oncotarget doi:10.18632/oncotarget.12479.
    53. Paraskevopoulou MD, Georgakilas G, Kostoulas N, Vlachos IS, Vergoulis T, Reczko M, Filippidis C, Dalamagas T, Hatzigeorgiou AG. 2013. DIANA-microT web server v5.0: service integration into miRNA functional analysis workflows. Nucleic Acids Res 41:W169-173.
    54. Reczko M, Maragkakis M, Alexiou P, Grosse I, Hatzigeorgiou AG. 2012. Functional microRNA targets in protein coding sequences. Bioinformatics 28:771-776.
    55. Li H, Jiang JD, Peng ZG. 2016. MicroRNA-mediated interactions between host and hepatitis C virus. World J Gastroenterol 22:1487-1496.
    56. Singaravelu R, Russell RS, Tyrrell DL, Pezacki JP. 2014. Hepatitis C virus and microRNAs: miRed in a host of possibilities. Curr Opin Virol 7:1-10.
    57. Gupta P, Cairns MJ, Saksena NK. 2014. Regulation of gene expression by microRNA in HCV infection and HCV-mediated hepatocellular carcinoma. Virol J 11:64.
    58. El-Abd NE, Fawzy NA, El-Sheikh SM, Soliman ME. 2015. Circulating miRNA-122, miRNA-199a, and miRNA-16 as Biomarkers for Early Detection of Hepatocellular Carcinoma in Egyptian Patients with Chronic Hepatitis C Virus Infection. Mol Diagn Ther 19:213-220.
    59. Xu G, Yang F, Ding CL, Wang J, Zhao P, Wang W, Ren H. 2014. MiR-221 accentuates IFNs anti-HCV effect by downregulating SOCS1 and SOCS3. Virology 462-463:343-350.
    60. El-Diwany R, Wasilewski LN, Witwer KW, Bailey JR, Page K, Ray SC, Cox AL, Thomas DL, Balagopal A. 2015. Acute Hepatitis C Virus Infection Induces Consistent Changes in Circulating MicroRNAs That Are Associated with Nonlytic Hepatocyte Release. J Virol 89:9454-9464.
    61. Li M, Wang Q, Liu SA, Zhang JQ, Ju W, Quan M, Feng SH, Dong JL, Gao P, Cheng J. 2015. MicroRNA-185-5p mediates regulation of SREBP2 expression by hepatitis C virus core protein. World J Gastroenterol 21:4517-4525.
    62. Ma Y, Wang R, Zhang J, Li W, Gao C, Liu J, Wang J. 2014. Identification of miR-423 and miR-499 polymorphisms on affecting the risk of hepatocellular carcinoma in a large-scale population. Genet Test Mol Biomarkers 18:516-524.
    63. Khanizadeh S, Ravanshad M, Hosseini SY, Davoodian P, Zadeh AN, Sabahi F, Sarvari J, Khanlari Z, Hasani-Azad M. 2016. The possible role of NS3 protease activity of hepatitis C virus on fibrogenesis and miR-122 expression in hepatic stellate cells. Acta Virol 60:242-248.
    64. Shiu TY, Huang SM, Shih YL, Chu HC, Chang WK, Hsieh TY. 2013. Hepatitis C virus core protein down-regulates p21(Waf1/Cip1) and inhibits curcumin-induced apoptosis through microRNA-345 targeting in human hepatoma cells. PLoS One 8:e61089.
    65. Xu H, Li G, Yue Z, Li C. 2016. HCV core protein-induced upregulation of microRNA-196a promotes aberrant proliferation in hepatocellular carcinoma by targeting FOXO1. Mol Med Rep 13:5223-5229.
    66. Liu B, Xiang Y, Zhang HS. 2015. Circulating microRNA-196a as a candidate diagnostic biomarker for chronic hepatitis C. Mol Med Rep 12:105-110.
    67. Kim GW, Lee SH, Cho H, Kim M, Shin EC, Oh JW. 2016. Hepatitis C Virus Core Protein Promotes miR-122 Destabilization by Inhibiting GLD-2. PLoS Pathog 12:e1005714.
    68. Liu D, Wu J, Liu M, Yin H, He J, Zhang B. 2015. Downregulation of miRNA-30c and miR-203a is associated with hepatitis C virus core protein-induced epithelial-mesenchymal transition in normal hepatocytes and hepatocellular carcinoma cells. Biochem Biophys Res Commun 464:1215-1221.
    69. Chou WW, Huang CF, Yeh ML, Tsai YS, Hsieh MY, Huang CI, Huang JF, Tsai PC, Hsi E, Juo SH, Tsai WL, Chuang WL, Yu ML, Dai CY. 2016. MicroRNA let-7g cooperates with interferon/ribavirin to repress hepatitis C virus replication. J Mol Med (Berl) 94:311-320.
    70. Zeng B, Li Z, Chen R, Guo N, Zhou J, Zhou Q, Lin Q, Cheng D, Liao Q, Zheng L, Gong Y. 2012. Epigenetic regulation of miR-124 by hepatitis C virus core protein promotes migration and invasion of intrahepatic cholangiocarcinoma cells by targeting SMYD3. FEBS Lett 586:3271-3278.
    71. Zhu B, Wei XX, Wang TB, Zhou YC, Liu AM, Zhang GW. 2015. Increased miR-16 expression induced by hepatitis C virus infection promotes liver fibrosis through downregulation of hepatocyte growth factor and Smad7. Arch Virol 160:2043-2050.
    72. Linsley PS, Schelter J, Burchard J, Kibukawa M, Martin MM, Bartz SR, Johnson JM, Cummins JM, Raymond CK, Dai H, Chau N, Cleary M, Jackson AL, Carleton M, Lim L. 2007. Transcripts targeted by the microRNA-16 family cooperatively regulate cell cycle progression. Mol Cell Biol 27:2240-2252.
    73. Wu WL, Wang WY, Yao WQ, Li GD. 2015. Suppressive effects of microRNA-16 on the proliferation, invasion and metastasis of hepatocellular carcinoma cells. Int J Mol Med 36:1713-1719.
    74. Chang CC, Lin CC, Hsieh WL, Lai HW, Tsai CH, Cheng YW. 2014. MicroRNA expression profiling in PBMCs: a potential diagnostic biomarker of chronic hepatitis C. Dis Markers 2014:367157.
    75. Cermelli S, Ruggieri A, Marrero JA, Ioannou GN, Beretta L. 2011. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One 6:e23937.
    76. El-Tawdi AH, Matboli M, Shehata HH, Tash F, El-Khazragy N, Azazy Ael S, Abdel-Rahman O. 2016. Evaluation of Circulatory RNA-Based Biomarker Panel in Hepatocellular Carcinoma. Mol Diagn Ther 20:265-277.
    77. Mao JH, Zhou RP, Peng AF, Liu ZL, Huang SH, Long XH, Shu Y. 2012. microRNA-195 suppresses osteosarcoma cell invasion and migration in vitro by targeting FASN. Oncol Lett 4:1125-1129.
    78. Long XH, Mao JH, Peng AF, Zhou Y, Huang SH, Liu ZL. 2013. Tumor suppressive microRNA-424 inhibits osteosarcoma cell migration and invasion via targeting fatty acid synthase. Exp Ther Med 5:1048-1052.
    79. Singh R, Yadav V, Kumar S, Saini N. 2015. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci Rep 5:17454.
    80. Zhao G, Dong L, Shi H, Li H, Lu X, Guo X, Wang J. 2016. MicroRNA-1207-5p inhibits hepatocellular carcinoma cell growth and invasion through the fatty acid synthase-mediated Akt/mTOR signalling pathway. Oncol Rep 36:1709-1716.
    81. Heinz RE, Rudolph MC, Ramanathan P, Spoelstra NS, Butterfield KT, Webb PG, Babbs BL, Gao H, Chen S, Gordon MA, Anderson SM, Neville MC, Gu H, Richer JK. 2016. Constitutive expression of microRNA-150 in mammary epithelium suppresses secretory activation and impairs de novo lipogenesis. Development 143:4236-4248.
    82. Wahdan-Alaswad RS, Cochrane DR, Spoelstra NS, Howe EN, Edgerton SM, Anderson SM, Thor AD, Richer JK. 2014. Metformin-induced killing of triple-negative breast cancer cells is mediated by reduction in fatty acid synthase via miRNA-193b. Horm Cancer 5:374-389.
    83. Shirasaki T, Honda M, Shimakami T, Horii R, Yamashita T, Sakai Y, Sakai A, Okada H, Watanabe R, Murakami S, Yi M, Lemon SM, Kaneko S. 2013. MicroRNA-27a regulates lipid metabolism and inhibits hepatitis C virus replication in human hepatoma cells. J Virol 87:5270-5286.
    84. Rayner KJ, Esau CC, Hussain FN, McDaniel AL, Marshall SM, van Gils JM, Ray TD, Sheedy FJ, Goedeke L, Liu X, Khatsenko OG, Kaimal V, Lees CJ, Fernandez-Hernando C, Fisher EA, Temel RE, Moore KJ. 2011. Inhibition of miR-33a/b in non-human primates raises plasma HDL and lowers VLDL triglycerides. Nature 478:404-407.
    85. Jin Y, Yang Y, Zhang P. 2011. New insights into RNA secondary structure in the alternative splicing of pre-mRNAs. RNA Biol 8:450-457.
    86. Masuda A, Shen XM, Ito M, Matsuura T, Engel AG, Ohno K. 2008. hnRNP H enhances skipping of a nonfunctional exon P3A in CHRNA1 and a mutation disrupting its binding causes congenital myasthenic syndrome. Hum Mol Genet 17:4022-4035.
    87. Mehdizadeh Aghdam E, Hejazi MS, Barzegar A. 2016. Riboswitches: From living biosensors to novel targets of antibiotics. Gene 592:244-259.
    88. Chettouh H, Fartoux L, Aoudjehane L, Wendum D, Claperon A, Chretien Y, Rey C, Scatton O, Soubrane O, Conti F, Praz F, Housset C, Rosmorduc O, Desbois-Mouthon C. 2013. Mitogenic insulin receptor-A is overexpressed in human hepatocellular carcinoma due to EGFR-mediated dysregulation of RNA splicing factors. Cancer Res 73:3974-3986.
    89. Chen M, Manley JL. 2009. Mechanisms of alternative splicing regulation: insights from molecular and genomics approaches. Nat Rev Mol Cell Biol 10:741-754.
    90. Fan B, Sutandy FX, Syu GD, Middleton S, Yi G, Lu KY, Chen CS, Kao CC. 2015. Heterogeneous Ribonucleoprotein K (hnRNP K) Binds miR-122, a Mature Liver-Specific MicroRNA Required for Hepatitis C Virus Replication. Mol Cell Proteomics 14:2878-2886.
    91. Fan B, Lu KY, Reymond Sutandy FX, Chen YW, Konan K, Zhu H, Kao CC, Chen CS. 2014. A human proteome microarray identifies that the heterogeneous nuclear ribonucleoprotein K (hnRNP K) recognizes the 5' terminal sequence of the hepatitis C virus RNA. Mol Cell Proteomics 13:84-92.
    92. Li Y, Masaki T, Shimakami T, Lemon SM. 2014. hnRNP L and NF90 interact with hepatitis C virus 5'-terminal untranslated RNA and promote efficient replication. J Virol 88:7199-7209.
    93. Baranov PV, Atkins JF, Yordanova MM. 2015. Augmented genetic decoding: global, local and temporal alterations of decoding processes and codon meaning. Nat Rev Genet 16:517-529.

    無法下載圖示 校內:2022-01-17公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE