| 研究生: |
魏志嶽 Wei, Chih-Yueh |
|---|---|
| 論文名稱: |
石斑魚肌肉生長抑制素之基因選殖與功能分析 Cloning and function analysis of the grouper(Epinephelus coioides) myostatin gene |
| 指導教授: |
陳宗嶽
Chen, Tzong-Yueh 楊惠郎 Yang, Huey-Lang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
生物科學與科技學院 - 生物科技研究所 Institute of Biotechnology |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 68 |
| 中文關鍵詞: | 石斑魚 、肌肉生長抑制素 、免疫剔除技術 、E-box |
| 外文關鍵詞: | immuno-depletion technique, grouper, myostatin, E-box |
| 相關次數: | 點閱:110 下載:2 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
石斑魚現為台灣及東南亞的重要經濟魚種,本論文從點帶石斑魚(Epinephelus coioides)中選殖到的肌肉生長抑制素(myostatin)cDNA,全長1,599 bp,轉譯出的胺基酸序列與其他哺乳動物與魚類發現到的具有高度保留性。肌肉生長抑制素屬於轉化生長因子β(TGF-β)成員之一,為抑制骨骼肌肉生長的負調控因子,此基因發生缺失的動物有肌肉異常增生的現象,造成所謂雙倍肌的明顯特徵。
本論文利用即時螢光定量PCR技術來分析石斑魚體各組織中肌肉生長抑制素表現量的分布差異,發現在肌肉以及眼睛中有較大量的表現;另一方面,遭受神經壞死病毒感染的石斑魚,其肌肉生長抑制素的表現量較健康石斑有些微的上昇,顯示肌肉生長抑制素的攀升可能與病毒感染有關。
而在肌肉生長抑制素啟動子的研究方面,所選殖到的啟動子序列包含有十個可能的肌肉特異性E-box,是這類啟動子的重要特徵,且接有啟動子的報導載體軟染入石斑魚鰭細胞(GF-1 cell line)是可以持續表現綠螢光蛋白,證實了所獲得的啟動子是具有活性的;此外藉由系列剔除發現E-box 1~3或TATA box造成較弱的報導基因表現,說明了此啟動子重要活性區域的所在位置。
應用方面,本論文使用免疫剔除技術(immuno-depletion technique)生產出具多個抗原重複數的抗原胜肽,具有較高的抗原性。本實驗初步發現實驗石斑魚隻的增重情形與抗體力價皆有上升的趨勢,因此希望能藉由此方法達到抑制內生性的肌肉生長抑制素,間接提升石斑魚的養成速率,縮短石斑魚上市的時間,藉以降低養殖期間的風險。
Groupers is a major mariculture in Taiwan and other Southeast Asian nowadays. We cloned the myostatin cDNA (1,599bp) from the orange-spotted grouper (Epinephelus coioides), and found that its deduced protein sequence is highly conserved among the mammalian and other fish species. Myostatin, a member of the transforming growth factor-β superfamily, is a negative regulator of skeletal muscle growth. Animals with inactivating mutations of myostatin have marked muscle hypertrophy, which is also called double- muscling phenotype.
We use real-time quantitative RT-PCR method to quantify the expression level of myostatin in various tissues. In grouper, myostatin mRNA is expressed mainly in muscle and eye. On the other hand, the expression of myostatin seems to increase lightly in the muscle of NNV-infected groupers in contrast with healthy ones. The phenomenon of myostatin increase is possible related to the effect of NNV infection.
Ten putative muscle-specific E-boxes exist in the promoter of grouper we cloned. And GFP expression of a promoter-reporter construct can be detected in transfected grouper cell line (GF-1). A series of deletion is also tested in GF-1, and such elimination of important cis-elements, such as TATA box, results in reduced reporter gene expression.
An application of immuno-depletion technique, we produce a peptide containing several repeats of the potential epitopes . And this antigen will have the higher antigenicity to increase the immune responds. Finally, we can inject the fusion antigens into groupers and make it grow faster and stronger by blocking the function of endogenous myostatin. And higher growth rate and antiserum titer was observed. Therefore, the higher product amount of fish meat will make the time to market shorter, and can lower the risk during mariculture.
粘茂偉 “利用TR-PCR發展石斑魚神經壞死病毒次單位疫苗”碩士論文 2003
張馨文 “石斑魚肌肉倍增基因之選殖與應用”碩士論文 2004
Biga P.R., Robert S.B., Iliev D.B., McCauley L.A.R., Moon J.S., Collodi P., & Goetz F.W. “The isolation, characterization, and expression of a novel GDF11 gene and a second myostatin form in zebrafish, Danio rerio” Comp. Biochem. Physiol., B 141: 218-230 (2005)
Bogdanovich S., Krag T.O.B., Barton E.R., Morris L.D., Whittemore L.A., Ahima R.S., & Khurana T.S. “Functional improvement of dystrophic muscle by myostatin blockade” Nature 420: 418-421 (2002)
Donnelly J.J., Jeffrey B.U., Linda A.H., Arthur F., Xiao-Pin S., Karen R.L., John W.S., Allen I.O., Douglas M., Donna M., & Margaret A.L. “Targeted delivery of peptide epitopes to class I major histocompatibility molecules by a modified Pseudomonas exotoxin” Proc. Natl. Acad. Sci. U.S.A. 90: 3530-3534 (1993)
Gamer L.W.., Wolfman N.M., Celeste A.J., Hattersley G., Hewick R., & Rosen V. “A novel BMP expressed in developing mouse limb, spinal cord, and tail bud is a potent mesoderm inducer in Xenopus embryos” Dev. Biol. 208: 222-232 (1999)
Gonzalez-Cadavid N.F., Taylor W.E., Yarasheski K., S-Hikim I., Ma K., Ezzat S., Shen R., Lalani R., Asa S., Mamita M., Nair G., Arver S., & Bhasin S. "Organization of the human myostatin gene and expression in healthy men and HIV-infected men with muscle wasting" Proc. Natl. Acad. Sci. U.S.A. 95: 14938-14943 (1998)
Guttridge D.C. “Signaling pathways weigh in on decisions to make or break skeletal muscle.” Curr. Opin. Clin. Nutr. Metab. Care 7(4): 443-450 (2004)
Hseuh K.H., Shang H.F., Wang L.F., Lo C.K. Liao C.W., & Hwang J “Engineering of Pseudomonas exotoxin A into useful proteins for disease treatment” J. Chinese Biochemical Society 23: 135-151 (1994)
Hsu C.T., Ting C.Y., Ting C.J., Chen T.Y., Lin C.P., Whang-Peng J. & Hwang J. “Vaccination against gonadotropin-releasing hormone (GnRH) using toxin receptor-binding domain conjugated GnRH repeats” Cancer Res. 60: 3701-3705 (2000)
Lalani, R., Bhasin, S., Byhower, F., Tarnuzzer, R., Grant, M., Shen, R., Asa, S., Ezzat, S., & Gonzalez-Cadavid, N.F. “Myostatin and insulin-like growth factor-I and -II expression in the muscle of rats exposed to the microgravity environment of the NeuroLab space shuttle flight” J. Endocrinol. 167: 417–428 (2000)
Jin H.-J., Dunn M.A., Borthakur D. & Kim Y.S. “Refolding and purification of unprocessed porcine myostatin expressed in Escherichia coli” Protein Expr. Purif. 35: 1-10 (2004)
Kocabas A.M., Kucuktas H., Dunham R.A., Liu Z. “Molecular characterization and differential expression of the myostatingene in channel catfish (Ictalurus punctatus)” Biochim. Biophys. Acta 1575: 99-107 (2002)
Maccatrozzo, L., Bargelloni, L., Radaelli, G., Mascarello, F., & Patarnello, T. “Characterization of the myostatin gene in the gilthead seabream (Sparus aurata): sequence, genomic structure, and expression pattern” Mar. Biotechnol. 3: 224-230 (2001a)
McPherron A.C., Lawler A.M., & Lee S.J. "Regulation of skeletal muscle mass in mice by a new TGF-β superfamily member" Nature 387: 83-90 (1997)
McPherron A.C., & Lee S.J. "Double muscling in cattle due to mutations in the yostatin gene" Proc. Natl. Acad. Sci. U.S.A. 94: 12457-12461 (1997)
McPherron A.C., Lawler A.M., & Lee S.-J. "Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11" Nature Genet. 22: 260-264 (1999)
Munday, B.L., Kwang J., & Moody N. "Betanodavirus infections of teleost fish: a review." J. Fish Dis. 25: 127-142. (2002)
Nakashima M., Toyono T., Alkamine A., & Joyner A. “Expression of growth/differentiation factor 11, a new member of the BMP/TGF_ superfamily during mouse embryogenesis” Mech. Dev. 80: 185-189 (1999)
Ostbye T.K., Galloway T.F., Nielsen C., Gabestad I., Bardal T., & Andersen Ø. “The two myostatin genes of Atlantic salmon (Salmo salar) are expressed in a variety of tissues” Eur. J. Biochem. 268: 5249-5257 (2001)
Rescan P.Y., Jutel I., & Rallière C. “Two myostatin genes are differentially expressed in myotomal muscles of the trout (Oncorhynchus mykiss)” J. Exp. Biol. 204: 3523-3529 (2001)
Roberts S.B. & Goetz F.W. “Differential skeletal muscle expression of myostatin across teleost species, and the isolation of multiple myostatin isoforms” FEBS Lett. 491: 212-216 (2001)
Roberts S.B. & Goetz F.W. “Myostatin protein and RNA transcript levels in adult and developing brook trout” Mol. Cell. Endocrinol. 210: 9-20 (2003)
Rodgers B.D., & Weber G.M. “Sequence conservation among fish myostatin orthologues and the characterization of two additional cDNA clones from Morone saxatilis and Morone americana” Comp. Biochem. Physiol., B 129: 597-603 (2001)
Rodgers B.D., Weber G.M., Sullivan C.V., & Levine M.A. “SIsolation and characterization of Myostatin complementary deoxyribonucleic acid clones from two commercially important fish: Oreochromis mossambicus and Morone chrysops” Endocrinol. 142: 1412-1418 (2001)
Schuelke M., Wagner K.R., Stolz L.E., Hübner C., Riebel T., Kömen W., Braun T., Tobin J.F., Lee S.J. "Myostatin mutation associated with gross muscle hypertrophy in a child" N. Engl. J. Med. 350: 2682-8 (2004)
Sharma M., Kambadur R., Matthews K.G., Somers W.G., Devlin G.P., Conaglen J.V., Fowke P.J., Bass J.J. “Myostatin, a transforming growth factor-β superfamily member, is expressed in heart muscle and is upregulated in cardiomyocytes after infarct” J. Cell. Physiol. 180: 1-9 (1999)
Spiller, M.P., Kambadur, R., Jeanplong, F., Thomas, M., Martyn, J.K., Bass, J.J., Sharma, M.,“The myostatin gene is a downstream target gene of basic helix-loop-helix transcription factor MyoD” Mol. Cell. Biol. 22: 7066-7082 (2002)
Thomas, M., Langley, B., Berry C., Sharma, M., Kirk A., Bass J., & KamBadur, R. “Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation” J. Biol. Chem. 275: 40235-40243 (2000)
Vianello S., Brazzoduro L., Valle L.D., Belvedere P. & Colombo L. “Myostatin expression during development and chronic stress in zebrafish (Danio rerio)”J. Endo. 176: 47-59 (2003)
Whittemore L.A., Song K., Li X., Aghajanian J., Davies M., Girgenrath S., Hill J.J., Jalenak M., Kelley P., Knight A., Maylor R., O’Hara D., Pearson A., Quazi A., Ryerson S., Tan X.Y., Tomkinson K.N., Veldman G.M., Widom A., Wright J.F., Wudyka S., Zhao L. & Wolfman N.M. “Inhibition of myostatin in adult mice increases skeletal muscle mass and strength” Biochem. Biophy. Res. Commu. 300: 965-971 (2003)
Xu, C., Wu, G., Zohar, Y., Du, S.J. “Analysis of myostatin gene structure, expression and function in zebrafish”J. Exp. Biol. 206: 4067-4079 (2003)
Zimmers T.A., Davies M.V., Koniaris L.G., Haynes P., Esquela A.F., Tomkinson K.N., McPherron A.C., Wolfman N.M., & Lee S.J. "Induction of Cachexia in Mice by Systemically Administered Myostatin" Science 296: 1486-1488 (2002)