| 研究生: |
魏敬訓 Wey, Jing-Xuan |
|---|---|
| 論文名稱: |
微分再生核近似法於大變形樑分析之應用 |
| 指導教授: |
王永明
Wang, Yong-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 大變形樑分析 、樑 、無元素法 、穩定性分析 |
| 外文關鍵詞: | DRKM, beam, large deformation, stablity |
| 相關次數: | 點閱:52 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文主要利用微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM)分析樑大變形問題,為探討樑在大變位下之力學行為,於細長樑(Long beams)與小應變(Small strain)之基本假設下,引入Euler angle來描述初始與變形後幾何特性的改變,藉由考慮樑上受力之平衡與作用力與變形關係,推導出三維大變形樑之控制方程式,由十二個變量組成之非線性常微分方程。而後,並將三維之控制方程簡化為二維,由六個變量組成之非線性常微分方程,求解平面彎曲樑之相關問題。數值求解以Newton-Raphson method將控制方程式及邊界條件加以線性化,再引入微分再生核近似法進行聯立常微分方程組之迭代求解。
在數值算例中,求解樑大變形問題、挫屈後的變形行為、snap-through等問題,與可得之數值解或解析解做比較。
[1] K.Mattiasson,A. Bengtsson and A. Samuelsson, On the accuracy and efficient of numerical algorithms for geometrically nolinear structural analysis. In Proc.Finite Element Methods for nonlinear Problems,Europe-U.S. Symp., Trondheim, pp. 3-23(1985)
[2] K.J. Bathe, E. Ramm and E.L. Wilson, Finite element formulation for large deformation dynamic analysis, Internat. J. Numer. Mech. Engrg. 9(1975) 353-386.
[3] R.D. Wood and O.C. Zienkiewicz, Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Comput. Struct. 7 (1977) 725-735.
[4] Kuo-Mo Hsiao, Horng-Jann Horng and Yeh-Ren Then, A co-rotational procedure that handles large rotations of spatial beam structures, Comput. Struct. 27(6) (1987) 769-781.
[5] Mattisson, K. (1980). Numerical results from large deflection beam and frame problem analyzed by means of ellipitical integrals. Int. J.. for Numer. Methods in Engrg., 17(1), 145-153.
[6] Morteza A. M. Torkamani,1 Member, ASCE, and Mustafa Sonmez. Inelastic large deflrction modeling of beam-columns. Journal of Structural Engineering, Vol. 127, No. 8, August, 2001.
[7] J.H. Argyris and Sp. Symeonidis, Nolinear finite element analysis of elastic systems under nonconservative loading-natural formulation. Part I. quasistatic problems. Comp. Mech. appl. Mech. Engng 26,75-123(1981).
[8] H.Kitagawa and Y. Tanizawa,Plastic collapseof thick-wall circular tube under external pressure subjected to axial force and bending moment. Tran. JSME 50A,270(1984).
[9] S.Srpcic and M. Saje, Large deformations of thin curved plane beam of constant initial curvature. Int. J. Mech. Sci. Vol. 28, No. 5, pp. 275-287,1986
[10] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability. McGraw-Hill, New York.
[11] F.W. Williams. An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections, Quart. J. Mech. Appl. Mech. 17 (1964) 456-469.
[12] A. Shinohara and M. Hara, Large deflection of a circular C-shaped spring. Int. J. Mech. Sci. 21,179-186(1979).
[13] A. Jennings, Frame analysis including change of geometry. J. Struct. Div, ASCE 94(ST3), 627-644(1968)
[14] M. Papadrakakis, Post-buckling analysis of spatial structures by vector iteration methods, Comput. Struct. 14 (1981) 393-402.
[15] J.S. Sandhu, K.A. Stevens and G.A.O. Davies, A 3-d co-rotational, curved and twisted beam element, Comput. Struct. 35(l) (1990) 69-79.
[16] J-L, Meek*, Qiang Xue. A study on the instability problem for 3D frames. Comput. Methods Appl. Mech. Engsg. 158 (1998) 235-254.
[17] Seyed A. Chini, and Made M. Wolde-Tinsae. Critical load and postbuckling of arch frameworks. Journal of Engineering Mechanics, Vol.144, No. 9, September, 1988.
[18] Morteza A. M. Torkamani,1 Member, ASCE, and Mustafa Sonmez, Inelastic large deflection modeling of beam-columns. Journal of Structural Engineering, Vol. 127, No. 8, August, 2001.
[19] Bathe, K. J.,and Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng., 14(7), 961-986.
[20] H.Kitagawa, Y. Tanizawa and R. Yokoyama,Plastic collapse of thick-wall elastic-plastic circular tube under external pressure. Tran. JSME Preprint 820, 22(1982).
[21] Shougao Tang, Aimin Yu. Generalized variational principle on nonlinear theory of naturally curved and twisted beams. Applied Mathematics and Computation 153 (2004) 275–288
[22] Herbert Reismann*. Three-dimensional finite inextensional deformation of a beam. International Journal of Non-Linear Mechanics 35 (2000) 157-165