簡易檢索 / 詳目顯示

研究生: 魏敬訓
Wey, Jing-Xuan
論文名稱: 微分再生核近似法於大變形樑分析之應用
指導教授: 王永明
Wang, Yong-Ming
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 103
中文關鍵詞: 大變形樑分析無元素法穩定性分析
外文關鍵詞: DRKM, beam, large deformation, stablity
相關次數: 點閱:52下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本文主要利用微分再生核近似法(Differential Reproducing Kernel Approximation Method, DRKM)分析樑大變形問題,為探討樑在大變位下之力學行為,於細長樑(Long beams)與小應變(Small strain)之基本假設下,引入Euler angle來描述初始與變形後幾何特性的改變,藉由考慮樑上受力之平衡與作用力與變形關係,推導出三維大變形樑之控制方程式,由十二個變量組成之非線性常微分方程。而後,並將三維之控制方程簡化為二維,由六個變量組成之非線性常微分方程,求解平面彎曲樑之相關問題。數值求解以Newton-Raphson method將控制方程式及邊界條件加以線性化,再引入微分再生核近似法進行聯立常微分方程組之迭代求解。

      在數值算例中,求解樑大變形問題、挫屈後的變形行為、snap-through等問題,與可得之數值解或解析解做比較。

    摘要Ⅰ 誌謝Ⅱ 目錄Ⅲ 表目錄Ⅶ 圖目錄Ⅷ 第一章緒論1 1.1 前言1 1.2 無元素法的發展與文獻回顧3 1.3 本文架構5 第二章理論基礎7 2.1 離散的再生核近似7 2.2 再生核形狀函數的微分9 2.3 加權函數與鄰近點的選取11 第三章樑大變形之理論推導13 3.1 基本假設13 3.2 樑起始狀態的描述14 3.3 樑變形後狀態的描述18 3.4 平衡方程式20 3.5 合力與變形關係(Timoshenko 假設)21 3.6 基本方程式22 3.7 古典樑(Euler beam)大變形理論23 3.8 二維樑控制方程式的簡化25 3.9 邊界條件27 3.9.1 三維邊界條件27 3.9.2 二維邊界條件28 第四章數值解法32 4.1 Newton-Raphson method32 4.1.1 三維樑控制方程式33 4.1.2 二維樑控制方程式40 4.1.3 邊界條件42 4.1.3.1 三維邊界條件42 4.1.3.2 二維邊界條件43 4.2 微分再生核解法與求解過程46 第五章數值算例48 5.1 二維懸臂直樑大變形48 5.1.1 自由端受集中彎矩48 5.1.2 自由端受向下集中力49 5.1.3 受正向均佈力50 5.2 二維曲樑大變形50 5.2.1 自由端受正向壓力51 5.2.2 自由端受切向剪力51 5.3 二維樑穩定性及挫屈後變形之分析52 5.3.1 懸臂樑分析52 5.3.2 簡支樑分析52 5.3.3 兩端固定樑分析53 5.3.4 一端固定一端簡支之樑分析54 5.3.5 兩跨簡支樑分析54 5.4 平面剛架穩定性分析55 5.4.1 平面門架分析55 5.4.2 L 型剛架分析56 5.5 Snap-though56 5.5.1 William toggle frame57 5.5.2 兩端固定之彎曲淺樑58 5.6 三維曲樑大變型問題59 5.7 三維懸臂樑側向挫曲59 第六章結論61 參考文獻100

    [1] K.Mattiasson,A. Bengtsson and A. Samuelsson, On the accuracy and efficient of numerical algorithms for geometrically nolinear structural analysis. In Proc.Finite Element Methods for nonlinear Problems,Europe-U.S. Symp., Trondheim, pp. 3-23(1985)

    [2] K.J. Bathe, E. Ramm and E.L. Wilson, Finite element formulation for large deformation dynamic analysis, Internat. J. Numer. Mech. Engrg. 9(1975) 353-386.

    [3] R.D. Wood and O.C. Zienkiewicz, Geometrically nonlinear finite element analysis of beams, frames, arches and axisymmetric shells, Comput. Struct. 7 (1977) 725-735.

    [4] Kuo-Mo Hsiao, Horng-Jann Horng and Yeh-Ren Then, A co-rotational procedure that handles large rotations of spatial beam structures, Comput. Struct. 27(6) (1987) 769-781.

    [5] Mattisson, K. (1980). Numerical results from large deflection beam and frame problem analyzed by means of ellipitical integrals. Int. J.. for Numer. Methods in Engrg., 17(1), 145-153.

    [6] Morteza A. M. Torkamani,1 Member, ASCE, and Mustafa Sonmez. Inelastic large deflrction modeling of beam-columns. Journal of Structural Engineering, Vol. 127, No. 8, August, 2001.

    [7] J.H. Argyris and Sp. Symeonidis, Nolinear finite element analysis of elastic systems under nonconservative loading-natural formulation. Part I. quasistatic problems. Comp. Mech. appl. Mech. Engng 26,75-123(1981).
    [8] H.Kitagawa and Y. Tanizawa,Plastic collapseof thick-wall circular tube under external pressure subjected to axial force and bending moment. Tran. JSME 50A,270(1984).

    [9] S.Srpcic and M. Saje, Large deformations of thin curved plane beam of constant initial curvature. Int. J. Mech. Sci. Vol. 28, No. 5, pp. 275-287,1986

    [10] S. P. Timoshenko and J. M. Gere, Theory of Elastic Stability. McGraw-Hill, New York.

    [11] F.W. Williams. An approach to the non-linear behaviour of the members of a rigid jointed plane framework with finite deflections, Quart. J. Mech. Appl. Mech. 17 (1964) 456-469.

    [12] A. Shinohara and M. Hara, Large deflection of a circular C-shaped spring. Int. J. Mech. Sci. 21,179-186(1979).

    [13] A. Jennings, Frame analysis including change of geometry. J. Struct. Div, ASCE 94(ST3), 627-644(1968)

    [14] M. Papadrakakis, Post-buckling analysis of spatial structures by vector iteration methods, Comput. Struct. 14 (1981) 393-402.

    [15] J.S. Sandhu, K.A. Stevens and G.A.O. Davies, A 3-d co-rotational, curved and twisted beam element, Comput. Struct. 35(l) (1990) 69-79.

    [16] J-L, Meek*, Qiang Xue. A study on the instability problem for 3D frames. Comput. Methods Appl. Mech. Engsg. 158 (1998) 235-254.

    [17] Seyed A. Chini, and Made M. Wolde-Tinsae. Critical load and postbuckling of arch frameworks. Journal of Engineering Mechanics, Vol.144, No. 9, September, 1988.

    [18] Morteza A. M. Torkamani,1 Member, ASCE, and Mustafa Sonmez, Inelastic large deflection modeling of beam-columns. Journal of Structural Engineering, Vol. 127, No. 8, August, 2001.
    [19] Bathe, K. J.,and Bolourchi, S. (1979). Large displacement analysis of three-dimensional beam structures. Int. J. Numer. Methods Eng., 14(7), 961-986.

    [20] H.Kitagawa, Y. Tanizawa and R. Yokoyama,Plastic collapse of thick-wall elastic-plastic circular tube under external pressure. Tran. JSME Preprint 820, 22(1982).

    [21] Shougao Tang, Aimin Yu. Generalized variational principle on nonlinear theory of naturally curved and twisted beams. Applied Mathematics and Computation 153 (2004) 275–288

    [22] Herbert Reismann*. Three-dimensional finite inextensional deformation of a beam. International Journal of Non-Linear Mechanics 35 (2000) 157-165

    下載圖示 校內:立即公開
    校外:2005-08-24公開
    QR CODE