簡易檢索 / 詳目顯示

研究生: 杜韋諺
Tu, Wei-Yen
論文名稱: 建構一高效能與高流量之病毒氣膠採樣系統
Development of an efficient viral aerosol sampling system with high flow rate
指導教授: 林明彥
Lin, Ming-Yeng
學位類別: 碩士
Master
系所名稱: 醫學院 - 環境醫學研究所
Department of Environmental and Occupational Health
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 43
中文關鍵詞: 病毒氣膠生物氣膠採樣器蒸氣噴射氣膠採樣器高流量採樣低濃度採樣
外文關鍵詞: viral aerosol, bioaerosol sampler, SJAC, high flow rate sampling, low concentration sampling
相關次數: 點閱:98下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 病毒氣膠充斥在人們的生活當中對民眾造成健康上的負面效應,每季不同種類的流行感冒病毒更是增加疾病預防的困難度,因國際化而加速病毒演化的產生感冒病毒的跨物種傳染亦嚴重影響人類生活品質。綜觀現行的生物氣膠採樣器皆無法對病毒氣膠滿足高捕集效能、低活性損失、低濃度捕集及採樣便利性,使我們對環境中病毒氣膠的狀況理解不深,無法在第一時間預防傳染病的爆發。因此本研究開發一高效能與高流量的病毒氣膠採樣系統,其高流量的特性使採樣系統能夠克服環境中低濃度病毒氣膠的捕集難度並擁有高生物回收率。
    研究使用MS2噬菌體做為測試病毒氣膠,研究在130 LPM的高流量下以不同的採樣氣流溫度(18℃、24℃)、不同蒸氣溫度(SJAC off (24℃)、55℃、78℃、99℃)及不同採樣設備(AGI-30、Biosampler®)來對低濃度(103 – 104 PFU/m3)的病毒氣膠進行15分鐘的採樣。SJAC採樣系統的採樣效能(生物回收率),活性捕集比(VCEF)是評斷採樣設備效能的參考依據,藉此確認SJAC採樣系統捕集低濃度病毒氣膠的可行性。
    研究結果指出,隨著蒸氣溫度的提升、採樣氣流溫度的下降,SJAC採樣系統的採樣效能及VCEF皆有所上升。兩個參數在蒸氣溫度99℃時皆有最好的成果,採樣效能高達70%以上,而VCEF也有13至22倍的成長。惟在蒸氣溫度99℃時使用水冷管降低採樣氣流溫度時會因為溫度梯度差的增加導致測試病毒的活性減損,儘管如此,SJAC採樣系統仍能有40%的採樣效能及3倍以上的VCEF。SJAC採樣系統在對傳統生物氣膠採樣效能的提升上,Biosampler®獲得的提升最多,但就總採樣效能而言AGI-30仍是本實驗參數中最適合與SJAC採樣系統搭配的生物氣膠採樣器。
    本研究成功克服前期研究對低濃度病毒氣膠捕集效能不佳的問題,並確認了SJAC對於高流量採樣應用的可能性。將來仍可繼續嘗試其他參數以研發捕集各全面病毒氣膠的效能,提供一台設備讓社會大眾了解環境中病毒氣膠狀況,降低民眾的健康風險及不必要的經濟損失。

    Airborne virus aerosols have negative effects on people’s health. Still, even though past influenza outbreaks had already caused lots of losses and death, there has been no viable tools to detect the concentration of environmental viral aerosols while maintaining high collection efficiency and viability preservation. Hence, this study aims to improve the performance of SJAC on sampling the low concentration viral aerosols by adjusting the parameters.
    This study is based on the SJAC sampling system developed by previous studies. By raising the system flow rate to 130±3 LPM, this study use different upstream temperatures (18 and 25℃), different steam temperatures (25 with SJAC off, 45, 57 and 65℃), different bioaerosol samplers (AGI-30 and Biosampler®) to sample the low concentration (104 PFU/m3) test viral aerosols at 12.5 LPM for 15 mins. The collection efficiency (CE) and viral collection efficiency factor (VCEF) are then used to evaluate the performance of SJAC sampling system.
    The result shows that as the steam temperature rises and the upstream temperature drops, both the collection efficiency (CE) and viral collection efficiency factor (VCEF) of SJAC sampling system rise as well, with the best performance at 65℃, which ranges from 1.4% to 59%. At the same temperature, VCEF also increases 9.3 times to 396.3 times. Although in improving the performance of the SJAC sampling system on sampling bioaerosols, Biosampler® yields the best result (396.3 times), AGI-30 is still the most suitable bioaerosol sampler when used in combination with the SJAC sampling system.
    This study successfully overcomes the problem of insufficient performances on collecting low concentration viral aerosols in previous studies, and shows the application and the potential of SJAC with high flow rate. By continuously testing other parameters and improving the performances to thoroughly collect all viral aerosols, this study intends to provide a comprehensive device to help people better understand the status of viral aerosols in the environment, lowering the health risks and avoiding unnecessary losses.

    一、前言 1 二、文獻回顧 5 2-1 生物氣膠 5 2-1-1 真菌 6 2-1-2 細菌 8 2-1-3 病毒 9 2-2 常見的氣膠捕集機制與缺陷 10 2-2-1 過濾法 11 2-2-2 慣性衝擊法 11 2-2-3 液體衝擊法 11 2-2-4 靜電集塵法 12 2-3 凝結收集法 13 2-3-1 生物氣膠放大單元(Bioaerosol Amplify Unit, BAU) (Oh et al., 2010) 13 2-3-2 蒸氣噴射氣膠收集器(Steam Jet Aerosol Collector, SJAC) 14 2-3-3 SJAC生物氣膠採樣系統 15 2-4 高流量的病毒氣膠捕集系統 15 三、研究材料與方法 17 3-1 研究架構 17 3-2 生物材料 18 3-3 實驗設備 18 3-3-1 噴霧器 18 3-3-2 蒸氣噴射氣膠收集器(SJAC)系統 19 3-3-3 掃描式微粒電動度分析儀 (SMPS) 20 3-4 病毒數量監測 21 3-4-1 活性監測-溶菌斑計數 21 3-5 實驗方法 22 3-5-1 暴露艙研究 22 3-5-2 評估SJAC採樣系統之採樣效能 24 3-6 統計分析 26 四、結果與討論 27 4-1 高流量SJAC系統對低濃度病毒氣膠的採樣效能 27 4-2 SJAC採樣系統對病毒氣膠的活性捕集比(VCEF) 32 五、結論 35 5-1 研究限制 36 5-2 研究建議 37 參考文獻 38

    Adams MH. 1959. Bacteriophages. Bacteriophages.
    Bałazy A, Toivola M, Adhikari A, Sivasubramani SK, Reponen T, Grinshpun SA. 2006. Do n95 respirators provide 95% protection level against airborne viruses, and how adequate are surgical masks? American Journal of Infection Control 34:51-57.
    BCRC. Bacteriophage culture and titer assay. Available: http://bcrc.firdi.org.tw/static/b01/2-6en.htm.
    Behrendt H, Becker W-M. 2001. Localization, release and bioavailability of pollen allergens: The influence of environmental factors. Current Opinion in Immunology 13:709-715.
    Brié A, Bertrand I, Meo M, Boudaud N, Gantzer C. 2016. The effect of heat on the physicochemical properties of bacteriophage ms2. Food and Environmental Virology 8:251-261.
    Burger H. 1990. Bioaerosols: Prevalence and health effects in the indoor environment. Journal of Allergy and Clinical Immunology 86:687-701.
    Cao G. 2004. Synthesis, properties and applications.
    Chang C-W, Grinshpun SA, Willeke K, Macher JM, Donnelly J, Clark S, et al. 1995. Factors affecting microbiological colony count accuracy for bioaerosol sampling and analysis. American Industrial Hygiene Association 56:979-986.
    Cox C, Wathes C. 1995. Bioaerosol handbook:Boca Raton, FL. Lewis Publisher.
    Dungan RS, Leytem AB. 2009. Qualitative and quantitative methodologies for determination of airborne microorganisms at concentrated animal-feeding operations. World Journal of Microbiology and Biotechnology 25:1505-1518.
    Dutkiewicz J, Pomorski ZJ, Sitkowska J, Krysińska-Traczyk E, Skórska C, Prażmo Z, et al. 1994. Airborne microorganisms and endotoxin in animal houses. Grana 33:85-90.
    Dutkiewicz J, Krysińska-Traczyk E, Prazmo Z, Skoŕska C, Sitkowska J. 2001a. Exposure to airborne microorganisms in polish sawmills. Annals of agricultural and environmental medicine: AAEM 8:71-80.
    Dutkiewicz J, Krysinska-Traczyk E, Skórska C, Sitkowska J, Prazmo Z, Golec M. 2001b. Exposure to airborne microorganisms and endotoxin in herb processing plants. Annals of Agricultural and Environmental Medicine 8:201-211.
    Erman M, Eglite M, Olefir A, Kalinina L. 1989. Aerogenic microflora in animal husbandry and poultry breeding areas, criteria of its harmful effect and hygienic regulation. Gigiena truda i professional'nye zabolevaniia:19-22.
    Fabian MP, Miller SL, Reponen T, Hernandez MT. 2005. Ambient bioaerosol indices for indoor air quality assessments of flood reclamation. Journal of Aerosol Science 36:763-783.
    Fabian P, McDevitt JJ, Houseman EA, Milton DK. 2009. Airborne influenza virus detection with four aerosol samplers using molecular and infectivity assays: Considerations for a new infectious virus aerosol sampler. Indoor air 19:433-441.
    Farnsworth JE, Goyal SM, Kim SW, Kuehn TH, Raynor PC, Ramakrishnan M, et al. 2006. Development of a method for bacteria and virus recovery from heating, ventilation, and air conditioning (hvac) filters. Journal of Environmental Monitoring 8:1006-1013.
    Fung F, Clark RF. 2004. Health effects of mycotoxins: A toxicological overview. Journal of Toxicology: Clinical Toxicology 42:217-234.
    Górny R, Dutkiewicz J. 2002. Bacterial and fungal aerosols in indoor environment in central and eastern european countries.
    Golmohammadi R, Valegård K, Fridborg K, Liljas L. 1993. The refined structure of bacteriophage ms2 at 2·8 Õ resolution. Journal of Molecular Biology 234:620-639.
    Harris SD. 2008. Branching of fungal hyphae: Regulation, mechanisms and comparison with other branching systems. Mycologia 100:823-832.
    Hatagishi E, Okamoto M, Ohmiya S, Yano H, Hori T, Saito W, et al. 2014. Establishment and clinical applications of a portable system for capturing influenza viruses released through coughing. PloS one 9:e103560.
    Heitman J. 2006. Sexual reproduction and the evolution of microbial pathogens. Current Biology 16:R711-R725.
    Hinds WC. 2012. Aerosol technology: Properties, behavior, and measurement of airborne particles:John Wiley & Sons.
    Ho H-M, Rao CY, Hsu H-H, Chiu Y-H, Liu C-M, Chao HJ. 2005. Characteristics and determinants of ambient fungal spores in hualien, taiwan. Atmospheric Environment 39:5839-5850.
    Hogan CJ, Lee M-H, Biswas P. 2004. Capture of viral particles in soft x-ray–enhanced corona systems: Charge distribution and transport characteristics. Aerosol Science and Technology 38:475-486.
    Hogan CJ, Jr., Kettleson EM, Lee MH, Ramaswami B, Angenent LT, Biswas P. 2005. Sampling methodologies and dosage assessment techniques for submicrometre and ultrafine virus aerosol particles. Journal of applied microbiology 99:1422-1434.
    Hudson HJ. 1992. Fungal biology:CUP Archive.
    Indermitte E. Microbial status of indoor air in office buildings in estonia. In: Proceedings of the Proceedings of 5th Valamo Conference on Environmental Health and Risk Assessment, 2001, Vol. 15.
    J.L. R, W.J. W, J.H. S, T.Z. D, G.L. A. 2002. Development of a high-volume aerosol collection system for the identification of air-borne micro-organisms. Letters in Applied Microbiology 34:162-167.
    Jennings DH, Lysek G. 1996. Fungal biology: Understanding the fungal lifestyle:Bios Scientific Publishers Ltd.
    Khlystov A, Wyers GP, Slanina J. 1995. The steam-jet aerosol collector. Atmospheric Environment 29:2229-2234.
    Knox R B, Suphioglu C, Taylor P, Desai R, Watson H C, Peng J L, et al. 2006. Major grass pollen allergen lol p 1 binds to diesel exhaust particles: Implications for asthma and air pollution. Clinical & Experimental Allergy 27:246-251.
    Krikštaponis A. 2000. Diversity of fungi species in occupational and residential environments and their biological peculiarities (toxicity, pathogenicity, proteolytic, lipolytic and cellulolytic activity). Summary of doctoral thesis.
    Kropinski AM, Mazzocco A, Waddell TE, Lingohr E, Johnson RP. 2009. Enumeration of bacteriophages by double agar overlay plaque assay. In: Bacteriophages: Methods and protocols, volume 1: Isolation, characterization, and interactions, (Clokie MRJ, Kropinski AM, eds). Totowa, NJ:Humana Press, 69-76.
    Kuchuk AA, Basanets AV, Louhelainen K. 2003. Bronchopulmonary pathology in workers exposed to organic fodder dust. Annals of Agricultural and Environmental Medicine 7:17-23.
    Kulkarni P, Baron P, Willeke K. 2011. Aerosol measurement: Principles, techniques, and applications. 3rd Edition ed. John Wiley & Sons.
    Löndahl J. 2014. Physical and biological properties of bioaerosols. In: Bioaerosol detection technologies:Springer, 33-48.
    Li H-W, Wu C-Y, Tepper F, Lee J-H, Lee CN. 2009. Removal and retention of viral aerosols by a novel alumina nanofiber filter. Journal of Aerosol Science 40:65-71.
    Lin X-T, Hsu N-Y, Wang J-R, Chen N-T, Su H-J, Lin M-Y. 2018. Development of an efficient viral aerosol collector for higher sampling flow rate. Environmental Science and Pollution Research 25:3884-3893.
    Lin X, Willeke K, Ulevicius V, Grinshpun SA. 1997. Effect of sampling time on the collection efficiency of all-glass impingers. American Industrial Hygiene Association Journal 58:480-488.
    Lin X, Reponen T, Willeke K, Wang Z, Grinshpun SA, Trunov M. 2000. Survival of airborne microorganisms during swirling aerosol collection. Aerosol Science and Technology 32:184-196.
    Lugauskas A, Krikštaponis, A., Bridžiuvienė, D. . 2001. Airborne fungi in the fur processing enterprise. Botanica Lithuanica 7:7.
    McDevitt JJ, Koutrakis P, Ferguson ST, Wolfson JM, Fabian MP, Martins M, et al. 2013. Development and performance evaluation of an exhaled-breath bioaerosol collector for influenza virus. Aerosol Science and Technology 47:444-451.
    Meklin T, Reponen T, Toivola M, Koponen V, Husman T, Hyvärinen A, et al. 2002. Size distributions of airborne microbes in moisture-damaged and reference school buildings of two construction types. Atmospheric Environment 36:6031-6039.
    Metzger WJ, Richerson HB, Worden K, Monick M, Hunninghake GW. 1986. Bronchoalveolar lavage of allergic asthmatic patients following allergen bronchoprovocation. CHEST 89:477-483.
    Milton DK, Fabian MP, Cowling BJ, Grantham ML, McDevitt JJ. 2013. Influenza virus aerosols in human exhaled breath: Particle size, culturability, and effect of surgical masks. PLOS Pathogens 9:e1003205.
    Moss S. 1986. 11 biology and phylogeny of the labyrinthulales and thraustochytriales. The biology of marine fungi:105.
    Oh S, Anwar D, Theodore A, Lee J-H, Wu C-Y, Wander J. 2010. Development and evaluation of a novel bioaerosol amplification unit (bau) for improved viral aerosol collection. Journal of Aerosol Science 41:889-894.
    P.‐C. Wu, Y.‐Y. Li, C.‐M. Chiang, C.‐Y. Huang, C.‐C. Lee, F.‐C. Li, et al. 2004. Changing microbial concentrations are associated with ventilation performance in taiwan's air‐conditioned office buildings. Indoor air 15:19-26.
    Park JH, Cox-Ganser J, Rao C, Kreiss K. 2006. Fungal and endotoxin measurements in dust associated with respiratory symptoms in a water-damaged office building. Indoor air 16:192-203.
    Parniske M. 2008. Arbuscular mycorrhiza: The mother of plant root endosymbioses. Nature Reviews Microbiology 6:763.
    Pastuszka JS, Kyaw Tha Paw U, Lis DO, Wlazło A, Ulfig K. 2000. Bacterial and fungal aerosol in indoor environment in upper silesia, poland. Atmospheric Environment 34:3833-3842.
    R. AH, G. M, M. Y. 2004. Evaluation of a high‐volume portable bioaerosol sampler in laboratory and field environments. Indoor air 14:385-393.
    Ratnaseelan AM, Tsilioni I, Theoharides TC. 2018. Effects of mycotoxins on neuropsychiatric symptoms and immune processes. Clinical Therapeutics 40:903-917.
    Reponen T. 1995. Aerodynamic diameters and respiratory deposition estimates of viable fungal particles in mold problem dwellings. Aerosol Science and Technology 22:11-23.
    Rylander R. 1987. The role of endotoxin for reactions after exposure to cotton dust. American journal of industrial medicine 12:687-697.
    S. B, I. AR, W. P, A. HJ, A. AE, W. TJ, et al. 2016. Chamber bioaerosol study: Human emissions of size‐resolved fluorescent biological aerosol particles. Indoor air 26:193-206.
    Šantl-Temkiv T, Amato P, Gosewinkel U, Thyrhaug R, Charton A, Chicot B, et al. 2017. High-flow-rate impinger for the study of concentration, viability, metabolic activity, and ice-nucleation activity of airborne bacteria. Environmental Science & Technology 51:11224-11234.
    SEO K, LEE JE, LIM MY, KO G. 2012. Effect of temperature, ph, and nacl on the inactivation kinetics of murine norovirus. Journal of Food Protection 75:533-540.
    Springorum AC, Clauß M, Hartung J. 2011. A temperature-controlled agi-30 impinger for sampling of bioaerosols. Aerosol Science and Technology 45:1231-1239.
    Stark PC, Celedón JC, Chew GL, Ryan LM, Burge HA, Muilenberg ML, et al. 2005. Fungal levels in the home and allergic rhinitis by 5 years of age. Environ Health Perspect 113:1405-1409.
    Su H-J, Wu P-C, Chen H-L, Lee F-C, Lin L-L. 2001. Exposure assessment of indoor allergens, endotoxin, and airborne fungi for homes in southern taiwan. Environmental Research 85:135-144.
    T. AZ, K. MA. 2018. Airborne spread of expiratory droplet nuclei between the occupants of indoor environments: A review. Indoor air 28:500-524.
    Therkorn JH, Mainelis G. 2013. Effect of agar plate volume on accuracy of culturable bioaerosol impactors. Aerosol Science and Technology 47:1353-1362.
    Traidl-Hoffmann C, Kasche A, Menzel A, Jakob T, Thiel M, Ring J, et al. 2003. Impact of pollen on human health: More than allergen carriers? International Archives of Allergy and Immunology 131:1-13.
    Verreault D, Moineau S, Duchaine C. 2008. Methods for sampling of airborne viruses. Microbiology and molecular biology reviews : MMBR 72:413-444.
    Viegas S, Caetano L, Korkalainen M, Faria T, Pacífico C, Carolino E, et al. 2017. Cytotoxic and inflammatory potential of air samples from occupational settings with exposure to organic dust. Toxics 5:8.
    von Helmholtz R. 1886. Untersuchungen über dämpfe und nebel, besonders über solche von lösungen. Annalen der Physik 263:508-543.
    W. Cooper C. 2010. High volume air sampling for viral aerosols: A comparative approach.
    Yao M, Mainelis G. 2006. Utilization of natural electrical charges on airborne microorganisms for their collection by electrostatic means. Journal of Aerosol Science 37:513-527.
    李彥頤. 2004. 辦公空間室內空氣品質管制策略之研究. 成功大學建築學系學位論文:1-188.
    莊啟佑. 2007. 靜電式活性生物氣膠採樣系統設計研究.
    勞動部勞動及職業安全衛生研究所. 行政院勞工委員會採樣分析建議方法.
    黃雅琪. 2009. 以靜電集塵技術為原理的生物氣膠採樣器之效能評估研究.
    萬國華, 李芝珊. 1997. 生物氣膠與健康影響. 中華職業醫學雜誌 4:15-23.
    謝在鈞. 2008. 長時間活性生物氣膠採樣設備之設計研究.

    下載圖示 校內:2023-07-30公開
    校外:2023-07-30公開
    QR CODE