簡易檢索 / 詳目顯示

研究生: 葉耀智
YEH, YAO-CHIH
論文名稱: 類神經虛擬量測之參數篩選與精度精進
Parameter Sifting and Accuracy Enhancement of Neural-Network-Based Virtual Metrology
指導教授: 鄭芳田
Cheng, Fan-Tien
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 製造工程研究所
Institute of Manufacturing Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 48
中文關鍵詞: 虛擬量測、逐片檢測模式之先進製程控制、以複迴歸為基之逐步選取法、以類神經網路為基之逐步選取法
外文關鍵詞: neural-network-based stepwise selection, wafer-to-wafer advanced-process-control, multiple-regression-based stepwise selection, Virtual metrology
相關次數: 點閱:84下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 當電子零件之尺寸日益縮小,逐片檢測模式之先進製程控制已成為半導體生產製程之關鍵性工作。為利將虛擬量測應用在逐片檢測模式之先進製程控制上,推估精度與即時性需求必須同時考量。

    為有效提昇虛擬量測推估精度,本研究針對「考量建模樣本新鮮度及數量」、「精進參數篩選法則」及「提昇推估值可信度」等三個方向提出可行之精度提昇方法。

    為驗證本研究所提出推估精度提昇之三種方法,採用國內某半導體廠之二個實際案例進行實驗,實驗結果證明該三種方法均能有效提昇推估精度,並能降低推估值之變異程度。

    As the dimension of electronic devices shrink increasingly, wafer-to-wafer (W2W) advanced process control (APC) becomes more essential for the critical stages of production processes. To contribute to VM applications in W2W APC, both conjecture-accuracy and real-time requirements need to be considered.

    In order to effectively enhance VM’s conjecture accuracy, this work proposes feasible approaches from three different aspects, including freshness and simple size of modeling, improvement of parameter-sifting algorithm, and enhancement of conjecture–value’s reliance level.

    Two practical cases of a semiconductor manufacturing factory are adopted to verify and evaluate these three proposed approaches to see whether they can meet the accuracy and real-time requirements of W2W APC or not. Test results show that these three approaches can not only improve conjecture accuracy and reduce the variance of conjecture values

    目 錄 i 圖 目 錄 iii 表 目 錄 iv 第一章 緒 論 1 1.1 研究背景 1 1.2 研究動機與目的 4 1.3 研究流程 6 1.4 論文架構 7 第二章 文獻探討與理論基礎 8 2.1 相關文獻探討 8 2.1.1 虛擬量測架構 8 2.1.2 建模樣本新鮮度 11 2.1.3 精進參數篩選法則 11 2.1.4 提昇推估值可信度 12 2.2 相關理論基礎 13 2.2.1 交互驗證法 13 2.2.2 逐步選取法 13 2.2.3 抽樣分配之標準差 14 2.2.4 簡易循環式類神經網路 14 2.2.5 虛擬量測精度評估指標 16 第三章 研究方法 17 3.1 實驗案例描述 17 3.2 考量建模樣本新鮮度及數量 19 3.2.1 建模樣本新鮮度實驗 19 3.2.2 建模樣本數量探討 22 3.2.3實驗結果 25 3.3 精進參數篩選法則 27 3.3.1 以類神經網路為基之逐步選取演算法 27 3.3.2 複迴歸與類神經逐步選取演算法比較 29 3.3.3 複迴歸與類神經篩選演算法實驗結果 31 3.4 提昇推估值可信度 33 3.4.1 推估值可信度之統計原理 33 3.4.2 推估值可信度實驗 33 3.4.3 推估模型評估機制 35 3.4.4 實驗結果 38 第四章 結果比較與討論 39 4.1 結果比較 39 4.1.1 實驗結果綜整 39 4.1.2 比較說明 41 4.2 分析與討論 42 4.2.1 探討精進參數篩選法則可降低推估執行時間之原因 42 4.2.2 三種提昇精度方法之整合順序 44 第五章 結 論 45 5.1 結論 45 5.1.1 考量建模樣本新鮮度及數量 45 5.1.2 精進參數篩選法則 45 5.1.3 提昇推估值可信度 45 5.2 本研究之貢獻 46 5.3 未來研究方向 46 參考文獻 47

    [1] A.C. Diebold, “Overview of metrology requirements based on the 1994 national technology roadmap for semiconductor,” in Proc. of IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 50-60, Nov. 1995.
    [2] 2003 International Technology Roadmap for Semiconductors (ITRS), Dec. 2003. http://public.itrs.net/
    [3] J. Moyne, E. del Castillo, and A.M. Hurwitz, Run-to-Run Control in Semiconductor Manufacturing. CRC Press, 2001.
    [4] A. Weber, “Virtual metrology and your technology watch List: Ten things you should know about this emerging technology,” Future Fab International, issue 22, section 4, pp. 52-54, Jan. 2007.
    [5] Y.-C. Su, T.-H. Lin, F.-T. Cheng, and W.-M. Wu, “Accuracy and real-time considerations for implementing various virtual metrology algorithms”, Submitted to IEEE Transactions on Semiconductor Manufacturing.
    [6] Y.-C. Chang and F.-T. Cheng, “Application development of virtual metrology in semiconductor industry, in Pro. of the 31st Annual Conference of the IEEE Industrial Electronics (IECON 2005), Raleigh, North Carolina, USA, pp. 124-129, Nov. 2005.
    [7] F.-T. Cheng, H.-C Huang, and C.-A. Kao, “Dual-phase virtual metrology scheme,” to appear in IEEE Transactions on Semiconductor Manufacturing.
    [8] Y.-T. Huang, F.-T. Cheng, and Y.-T. Chen, "Importance of data quality in virtual metrology, " in Proc. of The 32nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2006), Paris, France, pp.3727-3732, Nov. 2006.
    [9] Y.-C. Su, M.-H. Hung, F.-T. Cheng and Y.-T. chen, “ A processing quality prognostics scheme for plasma sputtering in TFT-LCD manufacturing,” IEEE Transactions on Semiconductor Manufacturing , vol. 19, issue 2 , pp. 183-194, 2006.
    [10] M.-H. Hung, T.-H. Lin, F.-T. Cheng, and R.-C. Lin, “A novel virtual metrology scheme for predicting CVD thickness in semiconductor manufacturing,” IEEE/ASME Transactions on Mechatronics, Vol. 12, No. 3, pp. 308-316, June 2007.
    [11] H. H. Yue, M. Tomoyasu, “Weighted principal component analysis and its applications to improve FDC performance”, in Proc. 43rd IEEE Decision and Control Conference, Vol.4, Issue 14-17, pp. 4262 – 4267, Dec. 2004.
    [12] Yong Liu, “Create stable neural networks by cross-validation”, in Proc. 2006 International Joint Conference on Neural Networks, Sheraton Vancouver Wall Centre Hotel, Vancouver, BC, Canada July 16-21, 2006.
    [13] L. Xu, W. J. Zhang, “Comparison of different methods for variable selection,” Analytica Chimica Acta, Vol. 446, pp. 477–483, 2001.
    [14] 梁志翔 「虛擬量測自參數之篩選法則」,國立成功大學製造工程研究所碩士論文,2006。
    [15] K. Hirotsu, M. A. Brooke,” An analog neural network chip with random weight change learning algorithm”, in Proc. 1993 International Joint Conference on Neural Networks, Vol. 3, 1993, pp. 3031–3034.
    [16] D. R. Anderson, D. J. Sweeney, T. A. Williams, and J.-C. Chen, Statistics for Business and Economics- A Practical Approach, Singapore: Thomson, 2006.
    [17] I. H. Witten and E. Frank, Data Mining: Practical Machine Learning Tools and Techniques, San Francisco, CA: Morgan Kaufman, 2005.
    [18] D. R. Anderson, D. J. Sweeney, T. A. Williams, and J.-C. Chen, Statistics for Business and Economics- A Practical Approach, Singapore: Thomson, 2006.
    [19] J. L. Elman, “Finding Structure in Time,” Cognitive Science, Volume 14, pp. 179-211, 1990.
    [20] S. A. DeLurgio, Forecasting Principles and Applications, New York: McGraw-Hill, 1998.

    無法下載圖示 校內:2107-08-22公開
    校外:2107-08-22公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE