| 研究生: |
董家豪 Dong, Jia-Hao |
|---|---|
| 論文名稱: |
微小核醣核酸microRNA-509-3p在卵巢癌復發所扮演的角色 The role of microRNA-509-3p in recurrence of ovarian cancer |
| 指導教授: |
洪澤民
Hong, Tse-Ming |
| 共同指導教授: |
陳玉玲
Chen, Yu-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 臨床醫學研究所 Institute of Clinical Medicine |
| 論文出版年: | 2011 |
| 畢業學年度: | 99 |
| 語文別: | 英文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 卵巢癌 、miR-509-3p 、鉑類藥物抗藥性 、PGM1 |
| 外文關鍵詞: | ovarian cancer, platinum resistance, miR-509-3p, PGM1 |
| 相關次數: | 點閱:72 下載:5 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
卵巢癌的病人在接受治療後的高復發率,使其成為婦女癌症中死亡率最高的癌症,大部分的病人在接受以鉑類藥物(platinum)為主的化療過後產生抗藥性而癌症復發,我們目標是找到一個microRNA參與在卵巢癌的復發的過程。和原位卵巢腫瘤比較,miR-509-3p的表現量在復發腫瘤呈現下降趨勢,而從卵巢癌細胞株A2780中篩出對鉑類藥物具抗藥性之細胞株A2780CP70中,miR-509-3p同樣呈現下降趨勢且幾乎不表現。在鉑類抗藥性株A2780CP70中過度表現miR-509-3p造成其對鉑類藥物更敏感;在A2780中抑制miR-509-3p的表現使其對鉑類藥物抗藥性提高。在卵巢癌細胞株SKOV-3中過度表現miR-509-3p同樣造成其對鉑類藥物敏感,而對紫杉醇無顯著差異。 藉由微陣列分析方式找到一個可能受到miR-509-3p調控的基因, phosphoglucomutase-1 (PGM1), 可能導致細胞對鉑類藥物抗藥性提高,但目前尚無直接證據連結PGM1與鉑類藥物抗藥性的相關性,我們發現在A2780CP70中過度表現miR-509-3p會抑制PGM1表現量,在A2780抑制miR-509-3p導致PGM1表現上升。miR-509-3p能夠藉由PGM1 3’UTR調控報告基因(luciferase)的表現。最後,RNAi抑制A2780CP70中PGM1表現量增加其對鉑類藥物的敏感度。總和以上,臨床檢體分析miR-509-3p在復發卵巢腫瘤中表現量下降,而miR-509-3p能藉由抑制PGM1表現而增強卵巢癌細胞對鉑類藥物的敏感度,間接暗示miR-509-3p在卵巢癌復發中所扮演的角色,也許調控miR-509-3p合併鉑類化療對未來卵巢癌治療上具有應用性。
Ovarian cancer has the highest mortality among gynecologic malignancies because of the high recurrence rates. The large majority of patients treate with platinum-based chemotherapy developed acquired platinum resistance and, subsequently, cancer recurrence. Resistance of cancer cells to platinum can develop by numerous mechanisms regulated by several genes. An individual miRNA negatively regulates dozens of distinct gene expression, thus it can be used as a suitable target for improving chemotherapeutics. We propose that some dysregulated miRNAs involve in recurrence of ovarian tumors by repressing dozens of gene expression. Here we show that miR-509-3p exhibits a decreased level in recurrent ovarian tumors compared to their primary pairs. Overexpressing miR-509-3p in ovarian cancer cells, SKOV-3, increases their sensitivity to platinum but not paclitaxel treatment. Decrease of endogenous miR-509-3p is also found in platinum-resistant A2780CP70 cells compared to their parental platinum-sensitive A2780 cells. Overexpression of miR-509-3p in A2780CP70 cells increases their sensitivity to platinum treatment. Undoubtedly, inhibition of miR-509-3p in A2780 cells, they become more resistant to platinum treatment. Transcriptome microarray analyses of miR-509-3p overexpression in A2780CP70 and SKOV-3 cells identify a potential target of miR-509-3p called phosphoglucomutase-1, PGM1, which may increase cells resistance to platinum. Overexpession of miR-509-3p reduces the expression level of PGM1. Silencing PGM1 in A2780CP70 cells leads to platinum sensitization. Taken together, here we report that miR-509-3p sensitizes ovarian cancer cells to platinum treatment by repressing the expression of PGM1, and miR-509-3p may have beneficial effects on ovarian cancer chemotherapeutics.
Asangani, I.A., Rasheed, S.A., Nikolova, D.A., Leupold, J.H., Colburn, N.H., Post, S., and Allgayer, H. (2008). MicroRNA-21 (miR-21) post-transcriptionally downregulates tumor suppressor Pdcd4 and stimulates invasion, intravasation and metastasis in colorectal cancer. Oncogene 27, 2128-2136.
Aslam, M.I., Taylor, K., Pringle, J.H., and Jameson, J.S. (2009). MicroRNAs are novel biomarkers of colorectal cancer. Br J Surg 96, 702-710.
Bentwich, I., Avniel, A., Karov, Y., Aharonov, R., Gilad, S., Barad, O., Barzilai, A., Einat, P., Einav, U., Meiri, E., et al. (2005). Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37, 766-770.
Bernassola, F., Salomoni, P., Oberst, A., Di Como, C.J., Pagano, M., Melino, G., and Pandolfi, P.P. (2004). Ubiquitin-dependent degradation of p73 is inhibited by PML. J Exp Med 199, 1545-1557.
Bohnsack, M.T., Czaplinski, K., and Gorlich, D. (2004). Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 10, 185-191.
Calin, G.A. (2009). MicroRNAs and cancer: what we know and what we still have to learn. Genome Med 1, 78.
Calin, G.A., Dumitru, C.D., Shimizu, M., Bichi, R., Zupo, S., Noch, E., Aldler, H., Rattan, S., Keating, M., Rai, K., et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci U S A 99, 15524-15529.
Calin, G.A., Sevignani, C., Dumitru, C.D., Hyslop, T., Noch, E., Yendamuri, S., Shimizu, M., Rattan, S., Bullrich, F., Negrini, M., et al. (2004). Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A 101, 2999-3004.
Callis, T.E., Pandya, K., Seok, H.Y., Tang, R.H., Tatsuguchi, M., Huang, Z.P., Chen, J.F., Deng, Z., Gunn, B., Shumate, J., et al. (2009). MicroRNA-208a is a regulator of cardiac hypertrophy and conduction in mice. J Clin Invest 119, 2772-2786.
Ceppi, P., Volante, M., Novello, S., Rapa, I., Danenberg, K.D., Danenberg, P.V., Cambieri, A., Selvaggi, G., Saviozzi, S., Calogero, R., et al. (2006). ERCC1 and RRM1 gene expressions but not EGFR are predictive of shorter survival in advanced non-small-cell lung cancer treated with cisplatin and gemcitabine. Ann Oncol 17, 1818-1825.
Chan, J.Y., Li, L., Fan, Y.H., Mu, Z.M., Zhang, W.W., and Chang, K.S. (1997). Cell-cycle regulation of DNA damage-induced expression of the suppressor gene PML. Biochem Biophys Res Commun 240, 640-646.
Chen, T., Triplett, J., Dehner, B., Hurst, B., Colligan, B., Pemberton, J., Graff, J.R., and Carter, J.H. (2001). Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res 61, 4679-4682.
Chendrimada, T.P., Gregory, R.I., Kumaraswamy, E., Norman, J., Cooch, N., Nishikura, K., and Shiekhattar, R. (2005). TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744.
Chung, G.E., Yoon, J.H., Myung, S.J., Lee, J.H., Lee, S.H., Lee, S.M., Kim, S.J., Hwang, S.Y., Lee, H.S., and Kim, C.Y. (2010). High expression of microRNA-15b predicts a low risk of tumor recurrence following curative resection of hepatocellular carcinoma. Oncol Rep 23, 113-119.
Cimmino, A., Calin, G.A., Fabbri, M., Iorio, M.V., Ferracin, M., Shimizu, M., Wojcik, S.E., Aqeilan, R.I., Zupo, S., Dono, M., et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci U S A 102, 13944-13949.
Croce, C.M. (2009). Causes and consequences of microRNA dysregulation in cancer. Nat Rev Genet 10, 704-714.
Davis, B.N., Hilyard, A.C., Nguyen, P.H., Lagna, G., and Hata, A. (2010). Smad proteins bind a conserved RNA sequence to promote microRNA maturation by Drosha. Mol Cell 39, 373-384.
Esquela-Kerscher, A., and Slack, F.J. (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6, 259-269.
Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C., and Parkin, D.M. (2010). Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127, 2893-2917.
Filipowicz, W. (2005). RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20.
Filippov, V., Solovyev, V., Filippova, M., and Gill, S.S. (2000). A novel type of RNase III family proteins in eukaryotes. Gene 245, 213-221.
Frankel, L.B., Christoffersen, N.R., Jacobsen, A., Lindow, M., Krogh, A., and Lund, A.H. (2008). Programmed cell death 4 (PDCD4) is an important functional target of the microRNA miR-21 in breast cancer cells. J Biol Chem 283, 1026-1033.
Friedman, R.C., Farh, K.K., Burge, C.B., and Bartel, D.P. (2009). Most mammalian mRNAs are conserved targets of microRNAs. Genome Res 19, 92-105.
Garofalo, M., Di Leva, G., Romano, G., Nuovo, G., Suh, S.S., Ngankeu, A., Taccioli, C., Pichiorri, F., Alder, H., Secchiero, P., et al. (2009). miR-221&222 regulate TRAIL resistance and enhance tumorigenicity through PTEN and TIMP3 downregulation. Cancer Cell 16, 498-509.
Godwin, A.K., Meister, A., O'Dwyer, P.J., Huang, C.S., Hamilton, T.C., and Anderson, M.E. (1992). High resistance to cisplatin in human ovarian cancer cell lines is associated with marked increase of glutathione synthesis. Proc Natl Acad Sci U S A 89, 3070-3074.
Gregory, R.I., Yan, K.P., Amuthan, G., Chendrimada, T., Doratotaj, B., Cooch, N., and Shiekhattar, R. (2004). The Microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240.
Guo, H., Ingolia, N.T., Weissman, J.S., and Bartel, D.P. (2010). Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466, 835-840.
Karube, Y., Tanaka, H., Osada, H., Tomida, S., Tatematsu, Y., Yanagisawa, K., Yatabe, Y., Takamizawa, J., Miyoshi, S., Mitsudomi, T., et al. (2005). Reduced expression of Dicer associated with poor prognosis in lung cancer patients. Cancer Sci 96, 111-115.
Kim, K.C., Jung, C.S., and Choi, K.H. (2006). Overexpression of p73 enhances cisplatin-induced apoptosis in HeLa cells. Arch Pharm Res 29, 152-158.
Kumar, M.S., Lu, J., Mercer, K.L., Golub, T.R., and Jacks, T. (2007). Impaired microRNA processing enhances cellular transformation and tumorigenesis. Nat Genet 39, 673-677.
le Sage, C., Nagel, R., Egan, D.A., Schrier, M., Mesman, E., Mangiola, A., Anile, C., Maira, G., Mercatelli, N., Ciafre, S.A., et al. (2007). Regulation of the p27(Kip1) tumor suppressor by miR-221 and miR-222 promotes cancer cell proliferation. EMBO J 26, 3699-3708.
Lee, C.H., Subramanian, S., Beck, A.H., Espinosa, I., Senz, J., Zhu, S.X., Huntsman, D., van de Rijn, M., and Gilks, C.B. (2009). MicroRNA profiling of BRCA1/2 mutation-carrying and non-mutation-carrying high-grade serous carcinomas of ovary. PLoS One 4, e7314.
Lee, Y., Hur, I., Park, S.Y., Kim, Y.K., Suh, M.R., and Kim, V.N. (2006). The role of PACT in the RNA silencing pathway. EMBO J 25, 522-532.
Lee, Y., Jeon, K., Lee, J.T., Kim, S., and Kim, V.N. (2002). MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21, 4663-4670.
Liu, J., Carmell, M.A., Rivas, F.V., Marsden, C.G., Thomson, J.M., Song, J.J., Hammond, S.M., Joshua-Tor, L., and Hannon, G.J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441.
Lu, J., Getz, G., Miska, E.A., Alvarez-Saavedra, E., Lamb, J., Peck, D., Sweet-Cordero, A., Ebert, B.L., Mak, R.H., Ferrando, A.A., et al. (2005). MicroRNA expression profiles classify human cancers. Nature 435, 834-838.
Lujambio, A., Calin, G.A., Villanueva, A., Ropero, S., Sanchez-Cespedes, M., Blanco, D., Montuenga, L.M., Rossi, S., Nicoloso, M.S., Faller, W.J., et al. (2008). A microRNA DNA methylation signature for human cancer metastasis. Proc Natl Acad Sci U S A 105, 13556-13561.
Lukusa, T., and Fryns, J.P. (2008). Human chromosome fragility. Biochim Biophys Acta 1779, 3-16.
Ma, L., Reinhardt, F., Pan, E., Soutschek, J., Bhat, B., Marcusson, E.G., Teruya-Feldstein, J., Bell, G.W., and Weinberg, R.A. (2010). Therapeutic silencing of miR-10b inhibits metastasis in a mouse mammary tumor model. Nat Biotechnol 28, 341-347.
Ma, L., Teruya-Feldstein, J., and Weinberg, R.A. (2007). Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature 449, 682-688.
Martinez, J., Patkaniowska, A., Urlaub, H., Luhrmann, R., and Tuschl, T. (2002). Single-stranded antisense siRNAs guide target RNA cleavage in RNAi. Cell 110, 563-574.
Maubant, S., Cruet-Hennequart, S., Poulain, L., Carreiras, F., Sichel, F., Luis, J., Staedel, C., and Gauduchon, P. (2002). Altered adhesion properties and alphav integrin expression in a cisplatin-resistant human ovarian carcinoma cell line. Int J Cancer 97, 186-194.
Medina, P.P., Nolde, M., and Slack, F.J. (2010). OncomiR addiction in an in vivo model of microRNA-21-induced pre-B-cell lymphoma. Nature 467, 86-90.
Medina, P.P., and Slack, F.J. (2008). microRNAs and cancer: an overview. Cell Cycle 7, 2485-2492.
Mok, S.C., Bonome, T., Vathipadiekal, V., Bell, A., Johnson, M.E., Wong, K.K., Park, D.C., Hao, K., Yip, D.K., Donninger, H., et al. (2009). A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell 16, 521-532.
O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435, 839-843.
Peinado, H., Olmeda, D., and Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nat Rev Cancer 7, 415-428.
Petrie, K., and Zelent, A. (2008). Marked for death. Nat Cell Biol 10, 507-509.
Pham, C.G., Bubici, C., Zazzeroni, F., Knabb, J.R., Papa, S., Kuntzen, C., and Franzoso, G. (2007). Upregulation of Twist-1 by NF-kappaB blocks cytotoxicity induced by chemotherapeutic drugs. Mol Cell Biol 27, 3920-3935.
Pillai, R.S., Bhattacharyya, S.N., and Filipowicz, W. (2007). Repression of protein synthesis by miRNAs: how many mechanisms? Trends Cell Biol 17, 118-126.
Pogribny, I.P., Filkowski, J.N., Tryndyak, V.P., Golubov, A., Shpyleva, S.I., and Kovalchuk, O. (2010). Alterations of microRNAs and their targets are associated with acquired resistance of MCF-7 breast cancer cells to cisplatin. Int J Cancer 127, 1785-1794.
Pothof, J., Verkaik, N.S., van, I.W., Wiemer, E.A., Ta, V.T., van der Horst, G.T., Jaspers, N.G., van Gent, D.C., Hoeijmakers, J.H., and Persengiev, S.P. (2009). MicroRNA-mediated gene silencing modulates the UV-induced DNA-damage response. EMBO J 28, 2090-2099.
Ravikumar, B., Imarisio, S., Sarkar, S., O'Kane, C.J., and Rubinsztein, D.C. (2008). Rab5 modulates aggregation and toxicity of mutant huntingtin through macroautophagy in cell and fly models of Huntington disease. J Cell Sci 121, 1649-1660.
Raymond, E., Chaney, S.G., Taamma, A., and Cvitkovic, E. (1998). Oxaliplatin: a review of preclinical and clinical studies. Ann Oncol 9, 1053-1071.
Ren, J.H., He, W.S., Nong, L., Zhu, Q.Y., Hu, K., Zhang, R.G., Huang, L.L., Zhu, F., and Wu, G. (2010). Acquired cisplatin resistance in human lung adenocarcinoma cells is associated with enhanced autophagy. Cancer Biother Radiopharm 25, 75-80.
Rodriguez, A., Griffiths-Jones, S., Ashurst, J.L., and Bradley, A. (2004). Identification of mammalian microRNA host genes and transcription units. Genome Res 14, 1902-1910.
Saito, Y., Liang, G., Egger, G., Friedman, J.M., Chuang, J.C., Coetzee, G.A., and Jones, P.A. (2006). Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell 9, 435-443.
Spahn, M., Kneitz, S., Scholz, C.J., Stenger, N., Rudiger, T., Strobel, P., Riedmiller, H., and Kneitz, B. (2010). Expression of microRNA-221 is progressively reduced in aggressive prostate cancer and metastasis and predicts clinical recurrence. Int J Cancer 127, 394-403.
Stewart, D.J. (2007). Mechanisms of resistance to cisplatin and carboplatin. Crit Rev Oncol Hematol 63, 12-31.
Swarbrick, A., Woods, S.L., Shaw, A., Balakrishnan, A., Phua, Y., Nguyen, A., Chanthery, Y., Lim, L., Ashton, L.J., Judson, R.L., et al. (2010). miR-380-5p represses p53 to control cellular survival and is associated with poor outcome in MYCN-amplified neuroblastoma. Nat Med 16, 1134-1140.
Tatham, M.H., Geoffroy, M.C., Shen, L., Plechanovova, A., Hattersley, N., Jaffray, E.G., Palvimo, J.J., and Hay, R.T. (2008). RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10, 538-546.
Thavaraj, S., Paterson, I.C., Hague, A., and Prime, S.S. (2005). Over-expression of TGF-beta1 in Smad4-deficient human oral carcinoma cells causes tumour regression in vivo by mechanisms that sensitize cells to apoptosis. J Pathol 205, 14-20.
Tummala, M.K., and McGuire, W.P. (2005). Recurrent ovarian cancer. Clin Adv Hematol Oncol 3, 723-736.
Valastyan, S., Reinhardt, F., Benaich, N., Calogrias, D., Szasz, A.M., Wang, Z.C., Brock, J.E., Richardson, A.L., and Weinberg, R.A. (2009). A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137, 1032-1046.
Wang, E., Bhattacharyya, S., Szabolcs, A., Rodriguez-Aguayo, C., Jennings, N.B., Lopez-Berestein, G., Mukherjee, P., Sood, A.K., and Bhattacharya, R. (2011). Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS One 6, e17918.
Wang, S.J., and Bourguignon, L.Y. (2006). Hyaluronan-CD44 promotes phospholipase C-mediated Ca2+ signaling and cisplatin resistance in head and neck cancer. Arch Otolaryngol Head Neck Surg 132, 19-24.
Workman, H.C., Sweeney, C., and Carraway, K.L., 3rd (2009). The membrane mucin Muc4 inhibits apoptosis induced by multiple insults via ErbB2-dependent and ErbB2-independent mechanisms. Cancer Res 69, 2845-2852.
Yang, H., Kong, W., He, L., Zhao, J.J., O'Donnell, J.D., Wang, J., Wenham, R.M., Coppola, D., Kruk, P.A., Nicosia, S.V., et al. (2008a). MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res 68, 425-433.
Yang, M.H., Hsu, D.S., Wang, H.W., Wang, H.J., Lan, H.Y., Yang, W.H., Huang, C.H., Kao, S.Y., Tzeng, C.H., Tai, S.K., et al. (2010). Bmi1 is essential in Twist1-induced epithelial-mesenchymal transition. Nat Cell Biol 12, 982-992.
Yang, N., Kaur, S., Volinia, S., Greshock, J., Lassus, H., Hasegawa, K., Liang, S., Leminen, A., Deng, S., Smith, L., et al. (2008b). MicroRNA microarray identifies Let-7i as a novel biomarker and therapeutic target in human epithelial ovarian cancer. Cancer Res 68, 10307-10314.
Yu, Z.W., Zhong, L.P., Ji, T., Zhang, P., Chen, W.T., and Zhang, C.P. (2010). MicroRNAs contribute to the chemoresistance of cisplatin in tongue squamous cell carcinoma lines. Oral Oncol 46, 317-322.
Zhang, H., Kolb, F.A., Jaskiewicz, L., Westhof, E., and Filipowicz, W. (2004). Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68.
Zhang, L., Volinia, S., Bonome, T., Calin, G.A., Greshock, J., Yang, N., Liu, C.G., Giannakakis, A., Alexiou, P., Hasegawa, K., et al. (2008). Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci U S A 105, 7004-7009.
Zhuo, W.L., Wang, Y., Zhuo, X.L., Zhang, Y.S., and Chen, Z.T. (2008). Short interfering RNA directed against TWIST, a novel zinc finger transcription factor, increases A549 cell sensitivity to cisplatin via MAPK/mitochondrial pathway. Biochem Biophys Res Commun 369, 1098-1102.