| 研究生: |
陳建志 Chen, Jiann-Jyh |
|---|---|
| 論文名稱: |
實驗計畫法應用於太陽能光電製程改善:以線鋸切片機台製程最佳化為例 The Study of Optimizing Saw Wire Machine Parameters for Solar Process Using Experimental Methodology |
| 指導教授: |
陳梁軒
Chen, Liang-Hsuan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 工業與資訊管理學系碩士在職專班 Department of Industrial and Information Management (on the job class) |
| 論文出版年: | 2011 |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 實驗設計 、太陽能切晶製程 、田口方法 、反應曲面法 、太陽能矽晶片 |
| 外文關鍵詞: | experimental design, the solar cut crystal manufacturing process, Taguchi method, Response Surface Methodology, solar silicon |
| 相關次數: | 點閱:124 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
企業要有良好競爭力面臨全球化市場之挑戰,必須仰賴製造技術不斷地改進及產品品質提升;因此,如何找出問題的癥結所在,是企業欲提升競爭力的首要課題。在企業資源有限的情形下,本研究之研究目的,乃以最少的實驗次數(較低的實驗成本)尋求一穩健的製程參數組合,達到最佳的品質水準表現。
太陽能產業的競爭力,主要在於產品差異化及整體總成本最低。由於目前矽原料大多為日、德、美等國少數供應商所掌控,使得台灣的廠商在矽原料取得之價格協商空間有限。在此限制下,太陽能廠商是否該著眼於找出太陽能生產製程中可以改善的利基點,並透過其它方法來降低整體生產成本,是本研究想探究之議題。
本研究以太陽能矽晶片(Solar Wafer)產品為研究案例,並以“線鋸切割製程”為主要之研究範圍,經由與研發/製程人員透過專家經驗法則及篩選實驗,分析出影響太陽能矽晶片良率的主要因子,找出影響製程之關鍵因子。再運用田口博士的參數設計方法從中獲得最佳化的製程參數,求得最佳的因子水準組合之改善成效,做為本研究的佐證依據,提出未來的研究方向與建議,以提供後續之研究指引。
Enterprises require powerful competitiveness to face challenges from global markets. It relies on continuous improvement of manufacture techniques and product qualities. How to find out the bottleneck of problems and to strengthen the competitiveness is the first lesson that enterprises need to learn.
The purpose of this research is to find a combined steady process recipe by a minimum number of experiments (lower experimental cost) to achieve an optimum quality under finite resources of an enterprise.
The major competitiveness in solar industry is the product differentiation and the lowest cost. As a result of the silicon materials are manipulated by a few suppliers from Japan, Germany, USA…etc. , And leads to a limited negotiation range during Taiwan vendees’ purchasing. According to this limitation, Whether the solar cell manufacturers should focus on the producing processes that can be improved, or reduce the production cost through other methods, Is the subject that this research investigates.
This research is taking “Solar wafer products” as a research case, Which majoring on “Wire Saw Process”. Try to find out the main factor of process yield and the key factor of process itself by cooperating with RD/Process experts through experts’ rule of thumb and screening experiment. Then calculate with Taguchi methodology to get an optimum recipe and best factor composition, Make them as an evidence and verification of this research. At the end, Provide a research direction and suggestion as a guidance in the future.
一、中文部份
王旭昇,2008,太陽能矽晶圓產業,IBT綜研所。
太陽光電產業之發展趨勢與應用,2009,工業技術研究院IEK。
田口玄一,1991,品質設計的實驗計畫法,中國生產力中心。
丘建華,2001,應用田口方法於電子薄膜配方之最佳製程條件之探討,國立中央大學碩士論文。
沈岳文,2004,游離再生磨粒線切割加工對矽晶圓品質特性之影響,國立雲林科技大學碩士論文。
李輝煌,2000,田口方法品質設計的原理與實驗,高立圖書有限公司,台北。
林恒正,2007,以二階子模型結合實驗設計法進行多晶片模組可靠度之最佳化分析,國立成功大學工程科學系博士論文。
林暉斌,2003,品質工程在SUS304不銹鋼伸線製程之改善,逢甲大學機械工程研究所碩士論文。
陳正芳、顏婉雯、黃英傑,2001,田口品質工程應用於LCD顯示器微影製程之品質改善。
張良漢,2009,應用田口法於精細覆晶構裝之最佳化設計,國立成功大學工程科學系碩士論文。
葉怡成,2001,實驗計畫法-製程與產品最佳化,五南圖書出版公司,台北。
楊政融,2006,以反應曲面法進行液晶螢幕多重領域最佳設計,國立成功大學機械工程學系碩士論文。
新興產業製程許可審核要點-以太陽光電製程為例,2010,桃園縣政府環境保護局。
蔡百鈞,2003,振動切削技術應用於微細線切割放電加工之研究,國立雲林科技大學機械工程學系碩士論文。
劉佳怡,2007,太陽光電產業製程與技術發展趨勢,工研院IEK新興能源研究部。
鍾清章總編訂,2002,品質工程(田口方法),中華民國品質學會,台北。
蘇朝墩,1997,產品穩健設計,中華民國品質學會,台北。
二、英文部份
Box, G.E.P., K.B. Wilson. 1951. On the experimental attainment of optimum condition. Journal of the Royal Statistic Society. 13 38-45.
Chen, P.H., C. Yau, K.Y. Wu, S. Lin, H.C. Shih. 2005. Application of the Taguchi’s design of experiments to optimize a bromine chemistry-based etching recipe for deep silicon trenches. Microelectronic Engineering. 77 110-115.
Chiang, Y.M., H.H. Hsieh. 2008. The use of the Taguchi method with grey relational analysis to optimize the thin-film sputtering process with multiple quality characteristic in color filter manufacturing. Computers & Industrial Engineering, In Press, Corrected Proof.
Falamaki, C., J. Veysizadeh. 2008. Taguchi design of experiments approach to the manufacture of one-step alumina microfilter/membrane supports by the centrifugal casting technique. Ceramics International. 34(7) 1653-1659.
Hill, W.J., W.G. Hunter. 1966. A review of response surface methodology: a literature survey. Technometrics. 8 571-590.
Khoei, A.R., I. Maters, D.T. Gethin. 2002. Design optimization of aluminium recycling processes using Taguchi technique. Journal of Materials Processing Technology. 127 96-106.
Liu, W., S.M. Batill, J.E. Renaud. 2001. Implementation Issue in Gradient-Enhanced Neural Work Response Surface Approximations, The Proceedings of the Fourth World Structure and Multidisciplinary Optimization. 299-301.
Martin, T., E. Viles, L. Ilzarbe, M. Jesus. 2007. Manufacturing industries need design of experiments (DOE) , Proceedings of the World Congress on Engineering Vol II WCE 2007. London, U.K, July 2-4.
Martin, T., E. Viles, L. Ilzarbe, L. Pozueta. 2008. Are all designs of experiments approaches suitable for your company? , Proceedings of the World Congress on Engineering Vol II WCE 2008. London, U.K, July 2-4.
Rikards, R., J. Auzins. 2001. Approximation Techniques for Response Surface Method in Structural Optimization, The Proceedings of the Fourth World Structure and Multidisciplinary Optimization.303-305.
Robinson, T.J., C.M. Borror , R.H. Myers. 2003. Robust parameter design: a review, Quality and Reliability Engineering International. 20 81-101.
Tan, O., A.S. Zaimoglu, S. Hinislioglu. 2005. Taguchi approach for optimization of the bleeding on cement-based grouts, Tunnelling and Underground Space Technology. 20 167-173.
Thomas, A.J., J. Antony. 2005. A comparative analysis of the Taguchi and Shainin DOE techniques in an aerospace environment, International Journal of Productivity and Performance Management. 54(8) 658-678.
Wablberg, R. 2008. Lean Six Meets FOILSTAMPING, Graphic Arts Monthly. 80(10) 19-23.
Yang, R. J., L. Gu, L. Liaw, C. Gearhart, C.H. Tho, X. Liu. 2001. Approximations for Safety Optimization of Large Systems, The Proceedings of the Fourth World Structure and Multidisciplinary Optimization. 164-166.