| 研究生: |
王世宇 Wang, Shih-Yu |
|---|---|
| 論文名稱: |
運用密度式神經塊模型探討 NMDA 受體於局部大腦皮質網路動力學的影響 Application of density-based neural mass model to the effects of NMDA receptor on the local cerebral cortex network dynamics |
| 指導教授: |
朱銘祥
Ju, Ming-Shaung |
| 共同指導教授: |
林宙晴
Lin, Chou-Ching |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 99 |
| 中文關鍵詞: | NMDA 受體 、平均場模型 、密度式神經塊模型 、多群神經網路 、電導式突觸動力學 |
| 外文關鍵詞: | NMDA receptor, mean field model, density-based neural mass model, multi-population neural network, conductance-based synaptic dynamics |
| 相關次數: | 點閱:202 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
NMDA受體被認為與認知學習有高度相關性,故NMDA受體失能常導致病理現象產生如規律性的慢波,且由於受到細胞膜外的鎂離子阻斷,離子通道的開啟與膜電位的變化密切相關,為NMDA受體主要的特性。故本研究於多群神經網路中加入NMDA受體,建構局部大腦皮質(layer IV~V)的神經網路模型,並模擬腦電圖波形以探討其可能病理機轉。然而腦電圖並非反映單一神經元的電生理活動,而是記錄神經群體電活動的總和,因此有必要整合平均場模型與NMDA受體模型,由於現今神經塊模型缺乏神經電生理的理論支持,而無法解釋生理實驗中各神經群體於網路架構之功能及生理意義。故本研究將延伸密度式神經塊模型,結合NMDA受體通道電導的完整動態行為,推導單群神經網路模型,並實現多群神經網路模擬。結果顯示不論動作電位頻率輸入為常數或隨機過程,突觸電導的平均場模型能定性且定量估測NMDA受體的統計量,在產生動作電位頻率輸出後,由於不滿足高斯分布假設,故平均膜電位的估測誤差較大,但平均動作電位頻率的估測依然準確,誤差最大僅為3~4 Hz。神經群體網路模擬關注的是平均動作電位頻率,其次為平均膜電位,故平均場模型的估測效能佳,並可運用於多群神經網路模擬。藉由調變NMDA受體電導,可觀察穩態下系統的動態由平衡點轉為極限軌跡,產生規律性的慢波,生理上普遍認為是病理症狀的表現,驗證本研究假設NMDA受體失能與突觸電導的變化相關。
NMDA receptors are believed to be highly related to cognitive learning, so dysfunction of NMDA receptors usually results in psychiatric diseases. The pathological phenomena in EEG signal such as regular slow waves were observed. Besides, the opening of NMDA channels is mediated by the postsynaptic voltage due to the block of magnesium ion. In this thesis, the dynamics of NMDA receptor were integrated into a multi-population neural network to build the model of local cerebral cortex(layer IV~V). The model was used to simulate EEG signal and explore its underlying pathological mechanism. However, EEG signal didn’t reflect electrical activity of a neuron but record the summed electrical activity of a neuronal population. It is necessary to derive the mean field model. Because neural mass model lacks physiological basis of a neuron, it can’t explain the function and physiological significance of each neuronal population. Hence, the density-based neural mass model(dNMM) was extended by considering the dynamic behavior of synaptic conductance of NMDA receptors. The single-population neural network was built and applied to the multi-population neural network. The results showed the dNMM could estimate the statistics(ensemble average and standard deviation) of NMDA receptors and firing rates of a neuronal population in response to time-varying or stochastic firing input. The dNMM was further applied to the multi-population neural network with NMDA receptors. The trajectory of the system states converged to an equilibrium point. As conductance of NMDA receptors increased, it was transformed into the limit cycle at steady state, generating low frequency waves at 6 Hz in EEG. The simulation proved the hypothesis that the regular slow waves in EEG may be due to dysfunction of NMDA receptors.
[1] J. S. Rothman, “Modeling Synapses,” In: D. Jaeger, R. Jung (eds), Encyclopedia of computational neuroscience. Springer, New York, pp. 1738–1750, 2015.
[2] E. J. Speckmann and C. E. Elger, “Neurophysiologic Basis of EEG and DC Potentials,” Electroencephalography. Basic Princ. Clin. Appl. Relat. Fields, 6th ed, 2010.
[3] A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” Bull. Math. Biol., vol. 52, no. 1–2, pp. 25-71, 1990.
[4] W. Gerstner, W. M. Kistler, R. Naud, and L. Paninski, “Neuronal dynamics: From single neurons to networks and models of cognition,” 1st ed. Cambridge University Press, 2014.
[5] A. Destexhe and M. Rudolph-Lilith, “Neuronal noise,” New York, USA: Springer-Verlag, 2012.
[6]N. Fourcaud-Trocme, D. Hansel, C. van Vreeswijk and N. Brunel, “How spike generation mechanisms determine the neuronal response to fluctuating input,” J. Neuroscience 23, pp. 11628–11640, 2003.
[7] B. Picconi, G. Piccoli, and P. Calabresi, “Synaptic dysfunction in Parkinson’s disease,” Adv. Exp. Med. Biol., vol. 970,pp. 553-572, 2012.
[8] C. Capone, M. DiVolo, A. Romagnoni, M. Mattia, and A. Destexhe, “State-dependent meanfield formalism to model different activity states in conductance-based networks of spiking neurons,” Phys. Rev. E, vol. 100, no. 6, p. 62413, 2019.
[9] M. A. Paradiso, M. F. Bear, and B. W. Connors, Neuroscience : exploring the brain, 4th ed. Philadelphia : Wolters Kluwer, 2016.
[10] T. J. Sejnowski, A. Destexhe, Thalamocortical Assemblies: How Ion Channels, Single Neurons and Large-Scale Networks Organize Sleep Oscillations, Oxford Univ. Press. Oxford, 2001.
[11] K. A. Newhall, G. Kovačič, P. R. Kramer, D. Zhou, A. V. Rangan, and D. Cai, “Dynamics of current-based, Poisson driven, integrate-and-fire neuronal networks,” Commun. Math. Sci, vol. 8, no. 2, pp. 541-600, 2010.
[12] F. A. C. Azevedo et al, “Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain,” J. Comp. Neurol., vol. 513, no. 5, pp. 532– 541, 2009.
[13] K. Im, J. M. Lee, O. Lyttelton, S. H. Kim, A. C. Evans, and S. I. Kim, “Brain size and cortical structure in the adult human brain,” Cereb. Cortex, vol. 18, no. 9, pp. 2181–2191, 2008.
[14] S. Raychaudhuri, “Introduction to Monte Carlo simulation,” in Proc. Winter Simulation Conf. (WSC), pp. 91–100, 2008.
[15] D. P. Landau and K. Binder, “A Guide to Monte Carlo Simulations in Statistical Physics,” 3rd ed. Cambridge, U.K.: Cambridge Univ. Press, 2009.
[16] D. J. Higham, “An algorithmic introduction to numerical simulation of stochastic differential equations,” SIAM Rev., vol. 43, no. 3, pp. 525–546, 2001.
[17] A. Omurtag, B. W. Knight, and L. Sirovich, “On the simulation of large populations of neurons,” J. Comput. Neurosci., vol. 8, no. 1, pp. 51–63, 2000.
[18] E. M. Izhikevich and G. M. Edelman, “Large-scale model of mammalian thalamocortical systems,” Proc. Natl. Acad. Sci. U. S. A., vol. 105, no. 9, pp. 3593–3598, 2008.
[19] D. Q. Nykamp and D. Tranchina, “A Population Density Approach that Facilitates Large-Scale Modeling of Neural Networks: Analysis and an Application to Orientation Tuning,” J. Comput. Neurosci, vol. 8, pp. 19-50, 2000.
[20] H. Risken and T. Frank, “The Fokker-Planck Equation: Methods of Solutions and Applications,” Series in Synergetics. Springer-Verlag, New York, 2nd ed., 1989.
[21] E. Haskell, D. Q. Nykamp, and D. Tranchina, “Population density methods for large-scale modelling of neuronal networks with realistic synaptic kinetics: Cutting the dimension down to size,” Netw. Comput. Neural Syst, vol. 12, pp. 141-174, 2001.
[22] C. Ly and D. Tranchina, “Critical analysis of dimension reduction by a moment closure method in a population density approach to neural network modeling,” Neural Comput, vol. 19, no. 8, pp. 2032–2092, 2007.
[23] C. Ly, “A Principled Dimension-Reduction Method for the Population Density Approach to Modeling Networks of Neurons with Synaptic Dynamics,” Neural Comput, vol. 25, no. 10, pp. 2682-2708, 2013.
[24] C. H. Huang and C.-C. K. Lin, “An efficient population density method for modeling neural networks with synaptic dynamics manifesting finite relaxation time and short-term plasticity,” eNeuro, vol. 5, no. 6, pp. 1–21, 2018.
[25] O. David and K. J. Friston, “A neural mass model for MEG/EEG: Coupling and neuronal dynamics,” Neuroimage, vol. 20, no. 3, pp. 1743-1755, 2003.
[26] C. H. Huang and C.-C. K. Lin, “A novel density-based neural mass model for simulating neuronal network dynamics with conductance-based synapses and membrane current adaptation,” Neural Networks, Elsevier, vo. 143, issue C, pp. 183–197, 2021.
[27] S. Coombes and A. Byrne, “Next Generation Neural Mass Models,” In A.Torcini & S. F.Corinto (Eds.), Nonlinear dynamics in computational neuroscience, pp. 1-16, Springer, 2019.
[28] E. Maneta, G. Garcia, “Psychiatric manifestations of anti-NMDA receptor encephalitis: neurobiological underpinnings and differential diagnostic implications,” Psychosomatics, vol. 55, no. 1, pp. 37–44, 2014.
[29] C. E. Jahr and C. F. Stevens, “Voltage dependence of NMDA-activated macroscopic conductances predicted by single-channel kinetics,” J. Neurosci, vol. 10, pp. 3178-3182, 1990.
[30] B. J. Zandt, S. Visser, M. J. van Putten, B. ten Haken, “A neural mass model based on single cell dynamics to model pathophysiology,” Journal of Computational Neuroscience, vol. 37, no. 3, pp. 549–568, 2014.
[31] M. Zavaglia, F. Cona, M. Ursino, “A neural mass model to simulate different rhythms in a cortical region,” Comput. Intell. Neurosci, vol. 10, pp. 1155–1158, 2010.
[32] R. J. Moran, K. E. Stephan, R. J. Dolan, K. J. Friston, “Consistent spectral predictors for dynamic causal models of steady-state responses,” Neuroimage, vol. 55, pp. 1694–1708, 2011.
[33] R. Brette and W. Gerstner, “Adaptive exponential integrate-and-fire model as an effective description of neuronal activity,” J. Neurophysiol., vol. 94, no. 5, pp. 3637–3642, 2005.
[34] A. Roth, & M. van Rossum, “Modeling synapses,” In Erik De Schutter (Ed.), Computational Modeling Methods for Neuroscientists, pp. 139–160, 2009.
[35] M. Stimberg, R. Brette, and D. F. M. Goodman, “Brian 2, an intuitive and efficient neural simulator,” Elife, vol. 8:e47314, pp. 1-41, 2019.
[36] P. Wang, A. M. Tartakovsky, and D. M. Tartakovsky, “Probability density function method for langevin equations with colored noise,” Physical Review Letters, vol. 110, no. 14, Article ID 140602, 2013.
[37] D. A. Barajas-Solano and A. M. Tartakovsky, “Probabilistic density function method for nonlinear dynamical systems driven by colored noise,” Phys. Rev, vol. 93, Article ID 052121, pp. 1-13, 2016.
[38] T. Maltba, P. A. Gremaud, and D. M. Tartakovsky, “Nonlocal PDF methods for Langevin equations with colored noise,” J. Comput. Phys, vol. 367, pp. 87–101, 2018.
[39] 蔡丞冠,“ 基於鈣離子長期可塑性之中大尺度神經群之建模與模擬,” 國立成功大學機械工程學系, 碩士論文, 2021.
[40] M. Augustin, J. Ladenbauer, F. Baumann, and K. Obermayer, “Low-dimensional spike rate models derived from networks of adaptive integrate-and-fire neurons: comparison and implementation,” PLOS Computational Biology, vol. 13, no. 6, Article ID e1005545, 2017.