簡易檢索 / 詳目顯示

研究生: 鄭新諺
Cheng, Hsin-Yen
論文名稱: 離子佈植技術應用於氮化鎵系列光電元件
Ion Implantation Technology Applied to GaN-based Optoelectronic Devices
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 97
中文關鍵詞: 離子佈植橫向過成長氮化鎵發光二極體光電化學產氫
外文關鍵詞: Ion implanted, Epitaxial Lateral Overgrowth, Gallium Nitride
相關次數: 點閱:116下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究半導體製程技術中的離子佈植製程,將其技術應用在三五族氮化鎵所製造的光電元件,分別應用於固態照明的紫外光發光二極體及再生能源的光電化學產氫中。
    第一個應用為固態照明的紫外光發光二極體,由於氮化鎵與c-plane藍寶石基板彼此晶格不匹配,使得在成長氮化鎵系列的發光二極體,要先克服材料缺陷對於元件產生的效率衰減。實驗在藍寶石基板上成長一層氮化鎵做為緩衝層,並於緩衝層進行週期性條紋狀的離子佈植,稱此類型基板為橫向過成長基板(ELOG Substrate),再以此基板用MOCVD法成長發光二極體結構。而氮化鎵只要經過離子佈植,晶格表面受到破壞區域,再成長發光二極體時會產生選擇性成長,氮化鎵不易成長於佈植區域,未經佈植的區域則向上堆疊成長,同時也左右橫向成長,橫向成長的氮化鎵可以抑制氮化鎵與c-plane的藍寶石基板晶格不匹配造成磊晶成長時差排缺陷,並從多項實驗結果來觀察差排缺陷,我們發現離子佈植技術不但可以使氮化鎵材料產生橫向過成長效果,也能夠抑制差排缺陷的生長,以其製作出高品質的光電元件,以橫向過成長(ELOG)的基板製作出光電元件可以獲得較佳光電特性,並發現佈植區域的比例範圍,是會影響整體材料的缺陷密度。
    第二個應用為再生能源的光電化學產氫。實驗使用具有週期性條紋狀的結構佈植於氮化鎵,並將矽離子植入未摻雜氮化鎵,使未摻雜氮化鎵轉變材料特性,由u-GaN轉變成n-GaN,並去討論改變週期性條紋狀結構的佈植區域比例,比較佈植區域的比例大小影響光電化學產氫及能量轉換效率的差異成因。

    Ion implantation technology plays an important role in semiconductor industry. The research applied various optoelectronic devices about solid state lighting and photo-electrochemical device.
    One of application is the ultraviolet light emitting diode. In the paper, Nakamura use regular stripes pattern with SiO2 or SixNy to epitaxy LASER diode. Using the epitaxial lateral overgrowth method makes the window GaN grow lateral in order to require high quality GaN template. The research makes use of ELOG method to adopt the idea replaced SiO2 with Silicon implantation. As for ion implantation destruction, the GaN lattice was damaged by ion bombardment. The lattice distortion make GaN not easily grow material. Such as ELOG overgrowth way, it could overcome the GaN lattice mismatch with Sapphire substrate to reduce threading dislocations. GaN films reduce significantly the dislocation density by ELOG silicon implantation method. According to the experiment result, UV LED after ELOG process enable to enhance light output power about lower defect.
    On the other hand, we take the GaN acted as working electrode with regular ion implantation to apply Photo-electrochemical field. Via ion implantation with specific ratio, ELOG GaN not only gather higher photocurrent density than none process GaN, but gain poor solar-to-hydrogen conversion efficiency.

    摘要 I 致謝 IX 目錄 X 表目錄 XIV 圖目錄 XV 第一章 序論 1 1.1前言 1 1.2光電元件應用於橫向成長背景 1 1.3實驗研究動機與目的 3 1.4第一章 參考文獻 6 第二章 基礎理論 8 2.1發光二極體 8 2.1.1發光二極體原理 8 2.1.2載子輻射複合方式 9 2.1.3離子佈植原理 10 2.1.4 離子佈植機台介紹及操作方式 14 2.2利用光電應用光化學產氫之原理 16 2.2.1光電化學系統 16 2.2.2半導體材料於光電化學的行為 17 第三章 離子佈植技術應用於紫外光發光二極體 20 3.1紫外光發光二極體製程方法 21 3.1.1磊晶層成長 22 3.1.2週期性條紋狀離子佈植製程 22 3.1.3紫外光發光二極體磊晶層成長 23 3.1.4發光二極體元件製程 23 3.1.5電極製作 24 3.2選擇性成長氮化鎵特性探討 26 3.2.1選擇性成長氮化鎵成長特性探討 26 3.2.2選擇性成長氮化鎵X-Ray特性探討 33 3.2.3選擇性成長氮化鎵陰極螢光特性探討 37 3.3 ELOG紫外光發光二極體光電特性探討 39 3.4 ELOG紫外光發光二極體材料特性分析 48 第四章 離子佈植技術應用於光電化學產氫 55 4.1光化學產氫實驗試片製程方法及實驗架構 56 4.1.1磊晶層成長 56 4.1.2週期性條紋狀離子佈植製程 56 4.1.3電極製作 58 4.1.4半導體材料退火 58 4.1.5光電化學實驗架設 58 4.2量測分析及討論 61 4.2.1經離子佈植過後元件外觀討論 61 4.2.2條紋狀佈植光電化學產氫討論及分析 63 4.2.3離子佈植於未摻雜氮化鎵特性討論 68 4.2.4 週期性條紋狀佈植進行光電化學產氫前後表面形貌分析 71 4.2.5週期性條紋狀佈植分析及探討 90 第五章 結論 92 5-1結論 92 參考文獻 94

    [1] 葉育翔,離子佈植技術應用於氮化鎵系列光電元件之研究,國立成功大學博士論文,(2015)
    [2] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin,and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaNLEDs grown on patterned sapphire substrates,” IEEE Photon. Technol.
    [3] C. H. Jang, J. K. Sheu, S. J. Chang, M. L. Lee, C. C. Yang, S. J. Tu, F. W.Huang, and C. K. Hsu, IEEE Photon. Technol. Lett. 23, 968 (2011).
    [4] D.B.Burckel ,Hongyou Fan,“Lithographically Defined Carbon Growth Templates for ELOG of GaN, ” Journal of Crystal Growth, 310 (2008)
    [5] C. M. Tsai, J. K. Sheu, P. T. Wang, W. C. Lai, S. C. Shei, S. J. Chang, C.H. Kuo, C. W. Kuo, and Y. K. Su, IEEE Photon. Technol. Lett. 18, 1213(2006).
    [6] Y. K. Su, J. J. Chen, C. L. Lin, S. M. Chen, W. L. Li, and C. C. Kao,J. Cryst. Growth 311(10), 2973–2976 (2009).
    [7] X. H. Wu, P. Fini, E. J. Tarsa, B. Heying, S. Keller, U. K. Mishra, S. P.DenBaars, and J. S. Speck, J. Cryst. Growth 189–190, 231 (1998).
    [8] C. H. Yen, W. C. Lai, Y. Y. Yang, C. K. Wang, T. K. Ko, S. J. Hon, and S.-J. Chang, IEEE Photon. Technol. Lett. 24, 294 (2012).
    [9] D. Hanser, E. A. Preble, T. Clites, T. Stephenson, R. Jacobs, T. Johnson,T. Paskova, and K. R. Evans, CS MANTECH Conference, Tampa, Florida,
    [10] J. K. Sheu, I.-H. Hung, W. C. Lai, S. C. Shei, and M. L. Lee, “Enhancementin output power of blue gallium nitride-based light-emitting diodeswith omnidirectional metal reflector under electrode pads,” Appl. Phys.Lett., vol. 93, no. 10, p. 103 507, Sep. 2008.
    [11] C. M. Tsai, J. K. Sheu, W. C. Lai, M. L. Lee, S. J. Chang, C. S. Chang,T. K. Ko, and C. F. Shen, “GaN-based LEDs output power improved by textured GaN/sapphire interface using in-situ SiH4 treatment process during epitaxial growth,” IEEE J. Sel. Topics Quantum Electron., vol. 15,no. 4, pp. 1275–1280, Jul./Aug. 2009.
    [12] S. Nakamura, M. Senoh, N. Iwasa, S. Nagahama, T. Yamada and T.Mukai: Jpn. J. Appl. Phys. 34 (1995) L1332.USA, 18–21 May 2009.
    [13] T. Mukai, M. Yamada and S. Nakamura: Jpn. J. Appl. Phys. 37 (1998)L1358
    [14] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T.Matsushita, H. Kiyoku, Y. Sugimoto, T. Kozaki, H. Umemoto, M. Sano and K. Chocho: Jpn. J. Appl. Phys. 37 (1998)
    [15] Jinn-Kong Sheu, , Shang-Ju Tu, Yu-Hsiang Yeh, Ming-Lun Lee, , and Wei-Chih Lai, “Gallium nitride-based light-emitting diodes with embedded air voids grown on Ar-implanted AlN/sapphire substrate, ” Appl. Phys. Lett. 101, 151103 (2012)
    [16] Akira Fujishima ,Kenichi Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature Publishing Group, ISSN 0028-0836,(1972)
    [17] Haddou EL Ghazi, “Optical characterization of InGaN/AlGaN/GaN diode grown on silicon carbide,” Optics Communications, Volume 281, Issue 12, pp.3314-3319(2008)
    [18] D.B.Burckel ,Hongyou Fan,“Lithographically Defined Carbon Growth Templates for ELOG of GaN, ” Journal of Crystal Growth, 310 (2008)
    [19] Akira Fujishima ,Kenichi Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode,” Nature Publishing Group, ISSN 0028-0836,(1972)
    [20] Halliday David, Resnick Robert ,Walker ,“Fundamental of Physics 7th, ” USA: John Wiley and Sons,, ISBN 0-471-23231-9(2005)
    [21] 蔣曉白,半導體積體電路生產技術從摻雜技術—離子佈植(Ion Implantation)談起,國家奈米元件實驗室/微影光罩組
    [22] 郭浩中、賴芳儀、郭守義 2012著,“LED原理與應用”,五南圖書出版公司.
    [23] Ansgar Laubsch, “Improving the high-current efficiency of LEDs” , IEEE, Transactions On Electron Devices, Vol. 57 , pp.79~87 ,(2010)
    [24] 施敏、伍國珏著,“半導體元件物理學第三版 ”國立交通大學出版社,(2009)
    [25] A. W. Bott, “ Electrochemistry of Semiconductors,” Curr. Sep., pp. 90. (1998)
    [26] A. W. Bott, “ Electrochemistry of Semiconductors,” Curr. Sep., pp. 87-91. (1998)
    [27] S. D. Lester, F. A. Ponce, M. G. Cranford, “ Post growth rapid thermal annealing of GaN: The relationship between annealing temperature, GaN crystal quality, and contact-GaN interfacial structure,” Appl. Phys. Lett. 66, 1249 (1996)
    [28] L. Sugiura, “Dislocation motion in GaN light-emitting devices and its effect on device lifetime,” J. Appl. Phys. 81, 1633(1997)
    [29] Martin F Schubert, “ Analysis of processes limiting quantum efficiency of AlGaInN LEDs at high pumping,” Appl. Phys. Lett. 91, 183507(2007).
    [30] Y. Narukawa, Y. Kawakami, M. Funato, Sz. Fujita, S. Fujita, and S. Nakamura, Appl. Phys.Lett., 70, 981 (1997)
    [31] A. A. Efremov, N. I. Bochkareva, R. I. Gorbunov, D. A. Larinovich, Yu. T. Rebane, D. V.Tarkhin, and Yu. G. Shreter, Semiconductors 40, 605 (2006)
    [32] S. D. Lester, F. A. Ponce, M. G. Cranford, and D. A. Steigerwald, Appl.Phys. Lett. 66, 1249 ~1995.
    [33] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames,Appl. Phys. Lett. 91, 141101 (2007)
    [34] S. Martin, M. R. Krames, R. S. Kern, and F. M. Steranka, Phys. Status Solidi A 188, 15 (2001)
    [35] S. F. Chichibu, T. Azuhata, M. Sugiyama, T. Kitamura, Y. Ishida, H. Okumurac, H. Nakanishi,T. Sota, and T. Mukai, J. Vac. Sci. Technol. B 19, 2177 (2001)
    [36] W. Y. Han, Y. Lu, H. S. Lee, M. W. Cole, L. M. Casas, A. DeAnni, and K. A. Jones, J. Appl. Phys. 74, 754 ~1993
    [37] M. E. Lin, S. Strite, A. Agarwal, A. Salwador, G. L. Zhou, N. Teraguchi,A. Rockett, and H. Morkoc, Appl. Phys. Lett. 62, 702 ~1993
    [38] Nakamura S, Senoh M, Nagahama S, Iwasa N, Yamada T,Matsushita T, Kiyoku H, Sugimoto Y, Kozaki T, Umemoto H, Sano M, Chocho K. Appl Phys Lett 1998.
    [39] S.Nakamura, M.Senoh, N.Iwasa, and S.Nagahama, Jpn.J.Appl. phys., vol.67,pp. L798-L799 (1995)
    [40] M. F. Schubert, S. Chhaied, J.K. Kim, and E. F. Schubert, J. W. Graff, appl. Phys. Lett., vol. 91, no. 23, pp. 231114-231116 (2007)
    [41] Y. L. Li, Y. R. Huang, and Y. H. Lai, appl. Phys. Lett., vol. 91, no. 18, pp. 181113-181115 (2007)
    [42] Y. C. Shen, G. O. Mueller, S. Watanabe, N. F. Gardner, A. Munkholm, and M. R. Krames, appl. Phys. Lett., vol. 91, no. 14, pp. 141101-141103 (2007)
    [43] Stocker DA, Schubert EF, Redwing JM. Appl Phys Lett,1998
    [44] Y. Narukawa, Y. Kawakami, S. Fujita, and S. Nakamura, Phys. Rev. B 55,(1997).
    [45] A. Hori, D. Yasunaga, A. Satake, and K. Fujiwara, Appl. Phys. Lett. 79, 3723 (2001)
    [46] C. M. Lee, C. C. Chuo, J. F. Dai, X. F. Zheng, and J. I. Chyi, J. Appl. Phys. 89, 6554 (2001)
    [47] A. J. Nozik, R. Memming, “ Physical chemistry of semiconductor-liquid interfaces,” The Journal of Physical Chemistry, vol. 100, pp. 13061-13078. (1996)
    [48] I. M. Huygens, K. Strubbe, W. P. Gomes (2000), “ Electrochemistry and Photoetching of n-GaN,” Journal of The Electrochemical Society, vol. 147, pp. 1797-1802.
    [49] Shu-Yen Liu, M. L. Lee,W. C. Lai, and J. K. Sheu, “Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts,’’ Optics Express, Vol. 19, No. S6(2011)
    [50] K. Fujii, T. Karasawa, K. Ohkawa, “ Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Japanese journal of applied physics, vol. 44, pp. L543-L545.(2005)
    [51] M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, and K. Ohkawa, “Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN,” J. Chem. Phys. 126(5), 054708(2007).
    [52] J. Li, J. Y. Lin, and H. X. Jiang, “Direct hydrogen gas generation by using InGaN epilayers as working electrodes,” Appl. Phys. Lett. 93(16), 162107 (2008).
    [53] K. Fujii, T. Karasawa, and K. Ohkawa, “Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation,” Jpn. J. Appl. Phys. 44(18), 543–545 (2005).
    [54] R. V. D. Krol, and M. Grätzel, Photoelectrochemical Hydrogen Production, New York: Springer Press, pp. 51-53. (2012)
    [55] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, “Direct water photoelectrolysis with patterned n-GaN,” Appl. Phys. Lett. 91(9), 093519 (2007).
    [56] A. J. Nozik and R. Memming, “Physical chemistry of semiconductor-liquid interfaces,” J. Phys. Chem. 100(31), 13061–13078 (1996).
    [57] M. Herrera Zaldivar, P. Ferna´ndez, and J. Piqueras, Journal of Applied Physics, Vol 83 , 2796 (1998)
    [58] Stocker DA, Schubert EF, Redwing JM. Appl Phys Lett1998;73:2654.
    [59] Kozawa T, Kachi T, Ohwaki T, Taga Y. J ElectrochemSoc 1996;143:L17.
    [60] Shiojima K. J Vac Sci Technol B 2000;18(1):37.

    下載圖示 校內:2020-06-30公開
    校外:2020-06-30公開
    QR CODE