簡易檢索 / 詳目顯示

研究生: 詹雅棻
Chan, Ya-Fen
論文名稱: 探討阿拉伯芥SWEET2功能的分子調控機制
Investigation of molecular regulation of SWEET2 function in Arabidopsis
指導教授: 郭瑋君
Guo, Woei Jiun
學位類別: 碩士
Master
系所名稱: 生物科學與科技學院 - 熱帶植物科學研究所
Institute of Tropical Plant Sciences
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 145
中文關鍵詞: SWEET2AHL26AHL29Flagellin22CRES-T system轉錄因子醣轉運蛋白離層酸茉莉酸水楊酸
外文關鍵詞: SWEET2, Transcription factor, AHL26, AHL29, suagr transporter, Flagellin22, Abscisic acid, Methyl jasmonate, Salicylic acid, CRES-T system
相關次數: 點閱:116下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • SWEET醣轉運蛋白不僅調控細胞間或細胞內醣類分配以維持植物生長,其活性也與病原菌感染繁殖所需醣份來源息息相有關。已知AtSWEET2為一根部液胞膜上的葡萄糖專一轉運蛋白,會受Pythium感染誘導以回收分泌至根圈之葡萄糖,進而限制病原菌繁殖,為重要的抗病機制。然而,AtSWEET2表現的訊息調控至目前未有任何研究。從酵母單雜合分析,我們分離出12個可能調控AtSWEET2啟動子的轉錄因子,利用阿拉伯芥原生質同時表現由AtSWEET2啟動子活化的冷光報導基因與轉錄因子分析其在活體中的調控能力,結果發現ANAC046轉錄因子的表達則可誘導AtSWEET2啟動子2倍的表達活性,而AHL26、AHL27、AHL29與TCP17轉錄因子的過表達會顯著抑制AtSWEET2啟動子的表達活性,達50%以上,其中AHL29抑制調控最強,因此聚焦分析。當共同表達1.4、1、0.5 kb 不同長度的AtSWEET2啟動子與AHL29時,發現雖然較短的啟動子顯著降低AtSWEET2的表現,然而AHL29的抑制調控的趨勢仍相同,顯示其結合位點應是位於0.5 kb之內,此與PlantPAN的分析在-1400 bp至-1000 bp之間及-500 bp內具有AHL的結合區。當分析AHL29兩個重要的保守區域突變對調控的影響,發現AT-hook motif (ahl29-6) 突變無法抑制AtSWEET2表達,而PPC/DUF domain (AHL29-ΔG)突變則不影響其抑制調控。為了進一步確定AHL29在植物生長的調控,利用qRT–PCR分析突變株中AtSWEET2基因表現,發現在持續活化的AHL29-D (Gain of function) 葉片中AtSWEET2表現量降低約60%,與瞬時表達分析結果雷同。然而在失去DNA結合力的ahl29-6 (Loss of function) 葉片中AtSWEET2表現卻也同樣降低約40%,推測ahl29-6 點突變可能不影響AHL29結合在AtSWEET2啟動子。
    進一步利用原生質體瞬時表現探討AHL29對AtSWEET2表現的調控是否會受到微生物訊息分子及荷爾蒙的影響。結果顯示處理0.1 μM細菌的鞭毛蛋白Flagellin22會促進AHL2抑制AtSWEET2表現,10 μM離層酸處理也有相同的促進抑制的趨勢。而30 μM茉莉酸甲酯與25 μM或50 μM水楊酸則減弱AHL29抑制AtSWEET2表現。此外我們也發現AHL29的調控與葡萄糖訊息有關。而另一與AHL29相同基因家族,在AT-hook motif中胺基酸相似性為66 %,在PPC/DUF domain中胺基酸相似性為68 %的AHL26,也會抑制調控AtSWEET2的表現程度,表現結果推測其在AtSWEET2啟動子的結合位點約在1.4 kb與1.0 kb間,未來將建立AHL26基因專一RNAi以及AHL保守序列 RNAi片段 (AT-hook motif與PPC/DUF296 domain) 進行功能分析。針對許多轉錄因子常會功能互補以致無法分離基因功能,我們也建立利用阻遏蛋白抑制基因家族表現的同型合子CRES-T轉殖株,雖然有檢測到阻遏蛋白的表現,然而AtSWEET2基因表現未有顯著差異。總言之,本研究發現AHL29負向調控AtSWEET2基因表現,且可能參與微生物感染訊息的途徑,未來需重複實驗驗証,也會利用突變株進行功能分析,以解析AtSWEET2的分子調控。

    In this study, we performed transient assay to indentify that AHL26, AHL27, AHL29 and TCP may function as a repressor, and ANAC046 may function as an activator to regulate AtSWEET2 expression where AHL29 showed the strongest effect and was further studied. The promoter delection analysis further indicated that the binding sites of AHL26 and AHL29 on AtSWEET2 promoter may be located between 1.4 kb to 1.0 kb upstream of the start site. Moreover, mutation in AT-hook motif (ahl29-6) resulted in reduced AHL29 binding on the AtSWEET2 promoter. Consistently, qRT-PCR analysis showed that expression of AtSWEET2 was significantly inhibited by 60% in leaves of AHL29 gain-of-function mutant plants. Furthermore, treatments of 0.1 μM Flagellin22 and 10 μM ABA will promote the repression of AHL29 on AtSWEET2 expression. On the other hands, treatments 30 μM methyl jasmonate and 25 μM salicylic acid reduced AHL29 repression. In summary, our studies indicated that AHL29 negativly regulate SWEET2 function and may be involved in signaling pathway of microorganism interaction in Arabidopsis roots.

    學位考試論文證明書………………………………………………………………………# 摘要 I 英文延伸摘要 (Extended Abstract) III 誌謝 VII 內容 (Contents) VIII List of Figures XV List of Supplemental Data XVII List of Supplemental Figures XVII List of Supplemental Tables XVII Chapter 1 前言 (Introduction) 1 1.1 醣轉運蛋白於植物之重要性 (The importance of sugar transporters in plants) 1 1.2 SWEET醣轉運蛋白的功能 (The functions of SWEET sugar transporters in plants) 3 1.3 SWEET醣轉運蛋白與病原體之間的關係 (The relationship between SWEETs and pathogens) 6 1.4 SWEET 醣轉運蛋白表現的調控機制 (The regulation mechanism of SWEETs expression) 7 1.5 利用酵母單雜合分析預測調控AtSWEET2之轉錄因子 (Prediction of transcription factors regulating AtSWEET2 by yeast one-hybrid analysis) 9 1.6 本文研究目的 (Aim) 10 Chapter 2 材料與方法 (Materials and methods) 11 2.1 種子表面殺菌、培養基配製與栽培介質配置 (Sterilization of seeds and growth medium) 11 2.1.1 種子表面消毒殺菌 (Sterilization of seeds) 11 2.1.2 植物培養基配製 (Preparation of plant tissue culture medium) 11 2.1.3 栽培介質配置 (Preparation of cultivated medium) 12 2.2 植物栽種方法 (Planting method ) 12 2.2.1 無菌播種與無菌幼苗之移苗 (Sterile sowing and sterile seedlings transplanting) 12 2.2.2 土壤種植 (Sowing in soil) 13 2.2.3 植株移苗至土中 (Plant transplanting into soil) 13 2.3 LB培養基之配置 (Luria-Bertaini medium dispensation) 13 2.3.1 LB液態培養基 (LB liquid medium) 13 2.3.2 LB固態培養基 (LB solid medium) 13 2.4 CREST品系之異型合子 (Heterozygous) 與同型合子 (Homozygous) 品系之篩選 (Screening heterozygous and homozygous lines of CRES-T lines) 14 2.5 RNA的萃取以及逆轉錄聚合酶鏈式反應 (RNA extraction and reverse transcription PCR) 15 2.5.1 RNA的萃取 (RNA extraction) 15 2.5.2 逆轉錄聚合酶鏈式反應 (Reverse transcription polymerase chain reaction, RT-PCR) 16 2.6 DNA、RNA濃度定量 (Quantification of nucleic acid) 17 2.7 終端聚合酶連鎖反應 (End-pointpolymerase chain reaction, End-pointPCR) 17 2.7.1 Taq 2X Master mix PCR 17 2.7.2 Pfu plus DNA polymerse PCR 17 2.7.3 One Taq DNA polymerse PCR 18 2.7.4 Colony PCR 18 2.7.5 重疊延伸PCR—製造序列缺失突變 (Overlap PCR-Make deletion mutagenesis) 18 2.8 RNA與DNA膠體電泳分析 (RNA and DNA gelelectrophoresis analysis) 19 2.9 即時定量聚合酶連鎖反應 (Real-time quantitative polymerase chain reaction, qRT-PCR) 20 2.10質體DNA之建構與轉型 (Plasmid DNA construction and transformation) 20 2.10.1 Gateway克隆法 (Gateway cloning) 20 2.10.2 T4連接法 (T4 ligation) 22 2.11 短暫表達分析所需質體之構築 (Construction of plasmids for transient expression assay) 22 2.11.1 報導質體的構築 (Construction of Reporter plasmids) 22 2.11.2 效應質體的構築 (Construction of effector plasmids) 23 2.11.3 內部控制質體圖譜 (Internal control plasmid map) 24 2.12 DNA片段之純化 (Purification of DNA fragments) 24 2.13 熱休克轉型法 (Heat shock transformation) 25 2.14 保菌 (E. coli stock preparation) 25 2.15 質體DNA之純化 (Plasmid DNA purification) 26 2.15.1 小量質體DNA之純化 (Plasmid miniprep purification) 26 2.15.2 大量質體DNA之純化 (Plasmid maxiprep purification) 26 2.16 阿拉伯芥原生質體之瞬時表達 (Transient expression in Arabidopsis protoplast) 27 2.16.1 植物材料之準備 (Preparation of plant material) 27 2.16.2 溶液之配置 (Reagent preparation) 28 2.16.3 阿拉伯芥原生質體之離析 (Isolation of Abrabidopsis protoplasts) 28 2.16.4 阿拉伯芥原生質體之轉型 (Arabidopsis protoplasts DNA-PEG—calcium transfection) 28 2.17 阿拉伯芥原生質體之報導基因活性分析 (Reporter gene activity assay in Abrabidopsis protoplasts) 29 2.17.1 萃取原生質體中蛋白質 (Proteins extraction in protoplasts) 29 2.17.2 溶液之配置 (Reagent preparation) 30 2.17.3 冷光素酶之活性分析 (Luciferase activity assay) 30 2.17.4 β-葡萄糖苷酸酶之活性分析 (β-glucuronidase activity assay) 31 2.18 菸草BY-2癒傷組織之繼代 (Tobacco BY-2 callus subculture) 32 2.18.1 培養基配方 (Medium formula) 32 2.18.2 菸草BY-2癒傷組織繼代之方法 (Tobacco BY-2 callus subculture) 33 2.18.3 菸草BY-2懸浮細胞建立與繼代 (Establishing a BY-2 suspension culture and routine culture of BY-2 cells) 33 2.19 菸草懸浮細胞原生質體萃取 (Protoplast isolation of BY-2 suspension cell) 34 2.19.1 溶液之配置 (Reagent preparation) 34 2.19.2 BY2原生質體之離析 (BY-2 protoplasts isolation) 34 2.20 RNAi (RNA interference) 轉殖植株之建立 (Establishment of RNAi transgenic plants) 34 Chapter 3 結果 (Result) 37 3.1 確認在活體中轉錄候選基因與AtSWEET2啟動子的結合能力 (Confirm binding activity of potential TFs to AtSWEET2 promoter in vivo) 37 3.2 利用生物資訊資料庫預測AtSWEET2 啟動子上的給合位點及順式調節因子 (Prediction of binding cites and cis-regulatory elements on the AtSWEET2 promoter using the bioinformatics database) 38 3.3 確認AHL29於AtSWEET2 啟動子上的結合位點 (Confirmation of the binding site of AHL29 on AtSWEET2 promoter) 39 3.4 分析AHL29突變對AtSWEET2表現的影響 (Effects of AHL29 mutation on AtSWEET2 expression ) 40 3.5 分析AHL29突變株AtSWEET2 2的基因表現 (Analyzing the expression of AtSWEET2 genes in AHL29 mutant lines) 41 3.6 生物訊息因子對於AHL29調控SWEET2表現的影響 (Effects of biotic signals on AHL29 regulated AtSWEET2 expression) 42 3.6.1了解 Flg22對於AHL29調控SWEET2表現的影響 (Understanding effects of Flg22 on AHL29 regulated AtSWEET2 expression) 42 3.6.2 分析賀爾蒙在AHL29調控AtSWEET2表現中扮演之角色 (Analysis of the role of hormones on AHL29 regulated AtSWEET2 expression) 43  離層酸 (Abscisic acid, ABA) 43  茉莉酸甲酯 (Methyl jasmonate, MeJA) 43  水楊酸 (Salicylic acid, SA) 44 3.6.3 在葡萄糖毒害逆境中對於AHL29調控AtSWEET2表現的影響 (Glucose toxicity affected AHL29 regulating AtSWEET2 expression) 45 3.7 確認AHL26於AtSWEET2 promoter上的結合位點 (Confirmation of the binding site of AHL26 on the AtSWEET2 promoter) 45 3.8 剖析AHL26結構缺失對於調控SWEET2表現的影響 (Effects of truncated AHL26 protein on expression of AtSWEET2 expression ) 46 3.9 建構菸草BY-2細胞短暫表達系統 (Establishment of transient expression analysis system in tobacco BY-2 cells) 46 3.9.1 BY-2癒傷組織繼代 (Subculturing BY-2 callus) 47 3.9.2 建立BY-2懸浮細胞之培養 (Establishment of a BY-2 suspension culture) 47 3.9.3 BY-2原生質體之分離測試 (Test of BY-2 protoplast isolation) 48 3.10 利用CRES-T system轉殖株分析轉錄候選基因調控AtSWEET2表現中扮演之角色 (Analyze the role of potentail transcription factors in AtSWEET2 expression by CRES-T system transgenic lines) 48 3.10.1 篩選同型合子CRES-T system轉殖株 (Screen of homozygous CRES-T system transgenic lines) 49 3.10.2 AtSWEET2於CRES-Tsystem轉殖株中的表現 (The expression of AtSWEET2 genes in CRES-T system transgenic lines) 50 3.10.3 驗證CRES-T轉殖株中抑制區塊的表現 (The expression of repression domain in selected CRES-T transgenic lines) 50 3.10.4 確認CRES-T轉殖株中下游基因表現 (The expression of the downstream genes in CRES-T transgenic lines ) 51 3.11 建構AHL26 RNAi轉殖株 (Establishment of AHL26 RNAi transgenic plants) 51 3.11.1 特殊的AHL26 RNAi 轉殖株品系建立 (Establishment of specific AHL26 RNAi transgenic plants) 52 3.11.2 一般的 AHL26 RNAi 轉殖株品系建立 (Establishment of general AHL26 RNAi transgenic plants) 52 Chapter 4 討論 (Discussion) 53 4.1 特定轉錄因子調控AtSWEET2表現 (Specific transcription factor regulating AtSWEET2 expression) 53 4.2 AHL29負向調控AtSWEET2表現 (AHL29 is negatively regulating AtSWEET2 expression) 57 4.3 AHL29本身結構突變會影響與AtSWEET2啟動子之結合活性 (The structure mutations of AHL29 affect the bindimg activity between AHL29 and AtSWEET2 promoter) 58 4.4 AHL29可能參與生物訊息分子對AtSWEET2表現調控機制中(AHL 29 may involve in the regulation the mechanism of AtSWEET2 and interaction with biotic signaling molecules interaction) 60 4.5 AHL29可能參與荷爾蒙對AtSWEET2表現調控機制(AHL 29 may involve in regulation the mechnish of AtSWEET2 and hormone interaction) 62 4.6 AHL26可能也為一抑制蛋白調控AtSWEET2表現 (AHL26 may be a repressor to inhibit AtSWEET2 expression) 64 4.7 CRES-T system轉殖株或許不一定適用於所有品系中 (CRES-T system transgenic lines may not necessarily apply to all strains) 65 Chapter 5 結論 (Conclusion) 68 參考文獻 133

    Aagaard L, Rossi JJ (2007) RNAi therapeutics: principles, prospects and challenges. Adv Drug Deliv Rev 59: 75-86
    Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M (1997) Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9: 841-857
    Aluri S, Buttner M (2007) Identification and functional expression of the Arabidopsis thaliana vacuolar glucose transporter 1 and its role in seed germination and flowering. Proc Natl Acad Sci U S A 104: 2537-2542
    Arabidopsis Genome I (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815
    Aravind L, Landsman D (1998) AT-hook motifs identified in a wide variety of DNA-binding proteins. Nucleic Acids Res 26: 4413-4421
    Audenaert K, De Meyer GB, Hofte MM (2002) Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms. Plant Physiol 128: 491-501
    Ayre BG (2011) Membrane-transport systems for sucrose in relation to whole-plant carbon partitioning. Mol Plant 4: 377-394
    Bezrutczyk M, Hartwig T, Horschman M, Char SN, Yang J, Yang B, Frommer WB, Sosso D (2018) Impaired phloem loading in zmsweet13a,b,c sucrose transporter triple knock-out mutants in Zea mays. New Phytol 218: 594-603
    Bhagyalakshmi N, Thimmaraju R, Narayan MS (2004) Various hexoses and di-hexoses differently influence growth, morphology and pigment synthesis in transformed root cultures of red beet (Beta vulgaris). Plant Cell Tissue and Organ Culture 78: 183-195
    Bolouri Moghaddam MR, Van den Ende W (2012) Sugars and plant innate immunity. J Exp Bot 63: 3989-3998
    Brandizzi F, Irons S, Kearns A, Hawes C (2003) BY-2 cells: culture and transformation for live cell imaging. Curr Protoc Cell Biol Chapter 1: Unit 1 7
    Braun DM (2012) SWEET! The Pathway Is Complete. Science
    Burketova L, Trda L, Ott PG, Valentova O (2015) Bio-based resistance inducers for sustainable plant protection against pathogens. Biotechnol Adv 33: 994-1004
    Cenik C, Chua HN, Zhang H, Tarnawsky SP, Akef A, Derti A, Tasan M, Moore MJ, Palazzo AF, Roth FP (2011) Genome Analysis Reveals Interplay between 5 ' UTR Introns and Nuclear mRNA Export for Secretory and Mitochondrial Genes. Plos Genetics 7
    Chardon F, Bedu M, Calenge F, Klemens PA, Spinner L, Clement G, Chietera G, Leran S, Ferrand M, Lacombe B, Loudet O, Dinant S, Bellini C, Neuhaus HE, Daniel-Vedele F, Krapp A (2013) Leaf fructose content is controlled by the vacuolar transporter SWEET17 in Arabidopsis. Curr Biol 23: 697-702
    Chen HY, Huh JH, Yu YC, Ho LH, Chen LQ, Tholl D, Frommer WB, Guo WJ (2015) The Arabidopsis vacuolar sugar transporter SWEET2 limits carbon sequestration from roots and restricts Pythium infection. Plant J 83: 1046-1058
    Chen LQ, Hou BH, Lalonde S, Takanaga H, Hartung ML, Qu XQ, Guo WJ, Kim JG, Underwood W, Chaudhuri B, Chermak D, Antony G, White FF, Somerville SC, Mudgett MB, Frommer WB (2010) Sugar transporters for intercellular exchange and nutrition of pathogens. Nature 468: 527-532
    Chen LQ, Qu XQ, Hou BH, Sosso D, Osorio S, Fernie AR, Frommer WB (2012) Sucrose efflux mediated by SWEET proteins as a key step for phloem transport. Science 335: 207-211
    Chisholm ST, Coaker G, Day B, Staskawicz BJ (2006) Host-microbe interactions: shaping the evolution of the plant immune response. Cell 124: 803-814
    Cho YH, Yoo SD (2011) Signaling Role of Fructose Mediated by FINS1/FBP in Arabidopsis thaliana. Plos Genetics 7
    Chong J, Piron MC, Meyer S, Merdinoglu D, Bertsch C, Mestre P (2014) The SWEET family of sugar transporters in grapevine: VvSWEET4 is involved in the interaction with Botrytis cinerea. J Exp Bot 65: 6589-6601
    Choudhary DK, Prakash A, Johri BN (2007) Induced systemic resistance (ISR) in plants: mechanism of action. Indian J Microbiol 47: 289-297
    Chow CN, Zheng HQ, Wu NY, Chien CH, Huang HD, Lee TY, Chiang-Hsieh YF, Hou PF, Yang TY, Chang WC (2016) PlantPAN 2.0: an update of plant promoter analysis navigator for reconstructing transcriptional regulatory networks in plants. Nucleic Acids Res 44: D1154-1160
    Chu Z, Fu B, Yang H, Xu C, Li Z, Sanchez A, Park YJ, Bennetzen JL, Zhang Q, Wang S (2006) Targeting xa13, a recessive gene for bacterial blight resistance in rice. Theor Appl Genet 112: 455-461
    Crick F (1970) Central dogma of molecular biology. Nature 227: 561-563
    Davuluri RV, Sun H, Palaniswamy SK, Matthews N, Molina C, Kurtz M, Grotewold E (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis cis-regulatory elements and transcription factors. BMC Bioinformatics 4: 25
    Dellaert LMW (1980) Segregation Frequencies of Radiation-Induced Viable Mutants in Arabidopsis-Thaliana (L) Heynh. Theoretical and Applied Genetics 57: 137-143
    Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386: 485-488
    Doidy J, Grace E, Kuhn C, Simon-Plas F, Casieri L, Wipf D (2012) Sugar transporters in plants and in their interactions with fungi. Trends Plant Sci 17: 413-422
    Dong F, Fu X, Watanabe N, Su X, Yang Z (2016) Recent Advances in the Emission and Functions of Plant Vegetative Volatiles. Molecules 21: 124
    Drozdowicz YM, Rea PA (2001) Vacuolar H(+) pyrophosphatases: from the evolutionary backwaters into the mainstream. Trends Plant Sci 6: 206-211
    Efroni I, Blum E, Goldshmidt A, Eshed Y (2008) A protracted and dynamic maturation schedule underlies Arabidopsis leaf development. Plant Cell 20: 2293-2306
    Favero DS, Jacques CN, Iwase A, Le KN, Zhao JF, Sugimoto K, Neff MM (2016) SUPPRESSOR OF PHYTOCHROME B4-#3 Represses Genes Associated with Auxin Signaling to Modulate Hypocotyl Growth. Plant Physiology 171: 2701-2716
    Feng CY, Han JX, Han XX, Jiang J (2015) Genome-wide identification, phylogeny, and expression analysis of the SWEET gene family in tomato. Gene 573: 261-272
    Ferrandiz C, Gu Q, Martienssen R, Yanofsky MF (2000) Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734
    Fujimoto S, Matsunaga S, Yonemura M, Uchiyama S, Azuma T, Fukui K (2004) Identification of a novel plant MAR DNA binding protein localized on chromosomal surfaces. Plant Mol Biol 56: 225-239
    Gallagher SR (1992) GUS Protocols: Using the GUS Gene as a Reporter of Gene Expression. In SR Gallagher, ed, Gus Protocols. Academic Press, San Diego, pp 1-4
    Gao Y, Wang ZY, Kumar V, Xu XF, Yuan P, Zhu XF, Li TY, Jia B, Xuan YH (2018) Genome-wide identification of the SWEET gene family in wheat. Gene 642: 284-292
    Guan YF, Huang XY, Zhu J, Gao JF, Zhang HX, Yang ZN (2008) RUPTURED POLLEN GRAIN1, a member of the MtN3/saliva gene family, is crucial for exine pattern formation and cell integrity of microspores in Arabidopsis. Plant Physiol 147: 852-863
    Guo WJ, Nagy R, Chen HY, Pfrunder S, Yu YC, Santelia D, Frommer WB, Martinoia E (2014) SWEET17, a facilitative transporter, mediates fructose transport across the tonoplast of Arabidopsis roots and leaves. Plant Physiol 164: 777-789
    Heckman KL, Pease LR (2007) Gene splicing and mutagenesis by PCR-driven overlap extension. Nat Protoc 2: 924-932
    Heil M, Bostock RM (2002) Induced systemic resistance (ISR) against pathogens in the context of induced plant defences. Ann Bot 89: 503-512
    Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant Journal 34: 733-739
    Hoffmann GR (1980) Genetic effects of dimethyl sulfate, diethyl sulfate, and related compounds. Mutat Res 75: 63-129
    Hummel I, Pantin F, Sulpice R, Piques M, Rolland G, Dauzat M, Christophe A, Pervent M, Bouteille M, Stitt M, Gibon Y, Muller B (2010) Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol 154: 357-372
    Huth JR, Bewley CA, Nissen MS, Evans JN, Reeves R, Gronenborn AM, Clore GM (1997) The solution structure of an HMG-I(Y)-DNA complex defines a new architectural minor groove binding motif. Nat Struct Biol 4: 657-665
    Jefferson RA, Kavanagh TA, Bevan MW (1987) Gus Fusions - Beta-Glucuronidase as a Sensitive and Versatile Gene Fusion Marker in Higher-Plants. Embo Journal 6: 3901-3907
    Jensen MK, Kjaersgaard T, Nielsen MM, Galberg P, Petersen K, O'Shea C, Skriver K (2010) The Arabidopsis thaliana NAC transcription factor family: structure-function relationships and determinants of ANAC019 stress signalling. Biochem J 426: 183-196
    Joshi CP, Zhou H, Huang XQ, Chiang VL (1997) Context sequences of translation initiation codon in plants. Plant Molecular Biology 35: 993-1001
    Kim SY, Kim SG, Kim YS, Seo PJ, Bae M, Yoon HK, Park CM (2007) Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucleic Acids Res 35: 203-213
    Kirchhoff J, Raven N, Boes A, Roberts JL, Russell S, Treffenfeldt W, Fischer R, Schinkel H, Schiermeyer A, Schillberg S (2012) Monoclonal tobacco cell lines with enhanced recombinant protein yields can be generated from heterogeneous cell suspension cultures by flow sorting. Plant Biotechnol J 10: 936-944
    Klemens PA, Patzke K, Deitmer J, Spinner L, Le Hir R, Bellini C, Bedu M, Chardon F, Krapp A, Neuhaus HE (2013) Overexpression of the vacuolar sugar carrier AtSWEET16 modifies germination, growth, and stress tolerance in Arabidopsis. Plant Physiol 163: 1338-1352
    Klemens PA, Patzke K, Trentmann O, Poschet G, Buttner M, Schulz A, Marten I, Hedrich R, Neuhaus HE (2014) Overexpression of a proton-coupled vacuolar glucose exporter impairs freezing tolerance and seed germination. New Phytol 202: 188-197
    Koornneef M, Dellaert LWM, Vanderveen JH (1982) Ems-Induced and Radiation-Induced Mutation Frequencies at Individual Loci in Arabidopsis-Thaliana (L) Heynh. Mutation Research 93: 109-123
    Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9: 1607-1619
    Kosugi S, Ohashi Y, Nakajima K, Arai Y (1990) An Improved Assay for Beta-Glucuronidase in Transformed-Cells - Methanol Almost Completely Suppresses a Putative Endogenous Beta-Glucuronidase Activity. Plant Science 70: 133-140
    Koyama T, Furutani M, Tasaka M, Ohme-Takagi M (2007) TCP transcription factors control the morphology of shoot lateral organs via negative regulation of the expression of boundary-specific genes in Arabidopsis. Plant Cell 19: 473-484
    Kuhn C, Grof CP (2010) Sucrose transporters of higher plants. Curr Opin Plant Biol 13: 288-298
    Lalonde S, Wipf D, Frommer WB (2004) Transport mechanisms for organic forms of carbon and nitrogen between source and sink. Annual Review of Plant Biology 55: 341-372
    Latchman DS (1997) Transcription factors: an overview. Int J Biochem Cell Biol 29: 1305-1312
    Leach KA, Tran TM, Slewinski TL, Meeley RB, Braun DM (2017) Sucrose transporter2 contributes to maize growth, development, and crop yield. J Integr Plant Biol 59: 390-408
    Lee J, Lee HJ, Shin MK, Ryu WS (2004) Versatile PCR-mediated insertion or deletion mutagenesis. Biotechniques 36: 398-400
    Lee K, Seo PJ (2017) Coordination of matrix attachment and ATP-dependent chromatin remodeling regulate auxin biosynthesis and Arabidopsis hypocotyl elongation. Plos One 12
    Lee LY, Fang MJ, Kuang LY, Gelvin SB (2008) Vectors for multi-color bimolecular fluorescence complementation to investigate protein-protein interactions in living plant cells. Plant Methods 4: 24
    Lee TI, Young RA (2000) Transcription of eukaryotic protein-coding genes. Annu Rev Genet 34: 77-137
    Lemoine R, La Camera S, Atanassova R, Dedaldechamp F, Allario T, Pourtau N, Bonnemain JL, Laloi M, Coutos-Thevenot P, Maurousset L, Faucher M, Girousse C, Lemonnier P, Parrilla J, Durand M (2013) Source-to-sink transport of sugar and regulation by environmental factors. Front Plant Sci 4: 272
    Lemonnier P, Gaillard C, Veillet F, Verbeke J, Lemoine R, Coutos-Thevenot P, La Camera S (2014) Expression of Arabidopsis sugar transport protein STP13 differentially affects glucose transport activity and basal resistance to Botrytis cinerea. Plant Mol Biol 85: 473-484
    Levine M, Tjian R (2003) Transcription regulation and animal diversity. Nature 424: 147-151
    Li Y, Feng S, Ma S, Sui X, Zhang Z (2017) Spatiotemporal Expression and Substrate Specificity Analysis of the Cucumber SWEET Gene Family. Front Plant Sci 8: 1855
    Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S (2017) The Plasma Membrane-Localized Sucrose Transporter IbSWEET10 Contributes to the Resistance of Sweet Potato to Fusarium oxysporum. Front Plant Sci 8: 197
    Lievens L, Pollier J, Goossens A, Beyaert R, Staal J (2017) Abscisic Acid as Pathogen Effector and Immune Regulator. Front Plant Sci 8: 587
    Lim PO, Kim Y, Breeze E, Koo JC, Woo HR, Ryu JS, Park DH, Beynon J, Tabrett A, Buchanan-Wollaston V, Nam HG (2007) Overexpression of a chromatin architecture-controlling AT-hook protein extends leaf longevity and increases the post-harvest storage life of plants. Plant J 52: 1140-1153
    Lin IW, Sosso D, Chen LQ, Gase K, Kim SG, Kessler D, Klinkenberg PM, Gorder MK, Hou BH, Qu XQ, Carter CJ, Baldwin IT, Frommer WB (2014) Nectar secretion requires sucrose phosphate synthases and the sugar transporter SWEET9. Nature 508: 546-549
    Liu Q, Yuan M, Zhou Y, Li X, Xiao J, Wang S (2011) A paralog of the MtN3/saliva family recessively confers race-specific resistance to Xanthomonas oryzae in rice. Plant Cell Environ 34: 1958-1969
    Lloyd AM, Barnason AR, Rogers SG, Byrne MC, Fraley RT, Horsch RB (1986) Transformation of Arabidopsis-Thaliana with Agrobacterium-Tumefaciens. Science 234: 464-466
    Long WH, Hensley SD (1972) Insect Pests of Sugar Cane. Annual Review of Entomology Volume 17, 1972: 149-176
    Lu H, Zou Y, Feng N (2010) Overexpression of AHL20 negatively regulates defenses in Arabidopsis. J Integr Plant Biol 52: 801-808
    Luo D, Carpenter R, Vincent C, Copsey L, Coen E (1996) Origin of floral asymmetry in Antirrhinum. Nature 383: 794-799
    Mabuchi A, Soga K, Wakabayashi K, Hoson T (2016) Phenotypic screening of Arabidopsis T-DNA insertion lines for cell wall mechanical properties revealed ANTHOCYANINLESS2, a cell wall-related gene. J Plant Physiol 191: 29-35
    Madej MG, Dang S, Yan N, Kaback HR (2013) Evolutionary mix-and-match with MFS transporters. Proc Natl Acad Sci U S A 110: 5870-5874
    Manck-Gotzenberger J, Requena N (2016) Arbuscular mycorrhiza Symbiosis Induces a Major Transcriptional Reprogramming of the Potato SWEET Sugar Transporter Family. Front Plant Sci 7: 487
    Martin-Trillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15: 31-39
    Matsushita A, Furumoto T, Ishida S, Takahashi Y (2007) AGF1, an AT-hook protein, is necessary for the negative feedback of AtGA3ox1 encoding GA 3-oxidase. Plant Physiol 143: 1152-1162
    Mbengue M, Navaud O, Peyraud R, Barascud M, Badet T, Vincent R, Barbacci A, Raffaele S (2016) Emerging Trends in Molecular Interactions between Plants and the Broad Host Range Fungal Pathogens Botrytis cinerea and Sclerotinia sclerotiorum. Front Plant Sci 7: 422
    Miao H, Sun P, Liu Q, Miao Y, Liu J, Zhang K, Hu W, Zhang J, Wang J, Wang Z, Jia C, Xu B, Jin Z (2017) Genome-wide analyses of SWEET family proteins reveal involvement in fruit development and abiotic/biotic stress responses in banana. Sci Rep 7: 3536
    Mitsuda N, Ikeda M, Takada S, Takiguchi Y, Kondou Y, Yoshizumi T, Fujita M, Shinozaki K, Matsui M, Ohme-Takagi M (2010) Efficient yeast one-/two-hybrid screening using a library composed only of transcription factors in Arabidopsis thaliana. Plant Cell Physiol 51: 2145-2151
    Mitsuda N, Ohme-Takagi M (2009) Functional analysis of transcription factors in Arabidopsis. Plant Cell Physiol 50: 1232-1248
    Mizuno H, Kasuga S, Kawahigashi H (2016) The sorghum SWEET gene family: stem sucrose accumulation as revealed through transcriptome profiling. Biotechnol Biofuels 9: 127
    Nagata T, Nemoto Y, Hasezawa S (1992) Tobacco BY-2 Cell Line as the “HeLa” Cell in the Cell Biology of Higher Plants. International Review of Cytology 132: 1-30
    Nath U, Crawford BC, Carpenter R, Coen E (2003) Genetic control of surface curvature. Science 299: 1404-1407
    Ng KH, Yu H, Ito T (2009) AGAMOUS controls GIANT KILLER, a multifunctional chromatin modifier in reproductive organ patterning and differentiation. PLoS Biol 7: e1000251
    O'Hara LE, Paul MJ, Wingler A (2013) How do sugars regulate plant growth and development? New insight into the role of trehalose-6-phosphate. Mol Plant 6: 261-274
    Oda-Yamamizo C, Mitsuda N, Sakamoto S, Ogawa D, Ohme-Takagi M, Ohmiya A (2016) The NAC transcription factor ANAC046 is a positive regulator of chlorophyll degradation and senescence in Arabidopsis leaves. Sci Rep 6: 23609
    Ouwerkerk PB, Meijer AH (2001) Yeast one-hybrid screening for DNA-protein interactions. Curr Protoc Mol Biol Chapter 12: Unit 12 12
    Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425: 257-263
    Patil G, Valliyodan B, Deshmukh R, Prince S, Nicander B, Zhao M, Sonah H, Song L, Lin L, Chaudhary J, Liu Y, Joshi T, Xu D, Nguyen HT (2015) Soybean (Glycine max) SWEET gene family: insights through comparative genomics, transcriptome profiling and whole genome re-sequence analysis. BMC Genomics 16: 520
    Patil M, Ramu SV, Jathish P, Sreevathsa R, Reddy PC, Prasad TG, Udayakumar M (2014) Overexpression of AtNAC2 (ANAC092) in groundnut (Arachis hypogaea L.) improves abiotic stress tolerance. Plant Biotechnology Reports 8: 161-169
    Pelleschi S, rocher JP, Prioul JL (1997) Effect of water restriction on carbohydrate metabolism andphotosynthesis in mature maize leaves. Pant,Cell & Enviroment 20: 493-503
    Phukan UJ, Jeena GS, Tripathi V, Shukla RK (2018) MaRAP2-4, a waterlogging-responsive ERF from Mentha, regulates bidirectional sugar transporter AtSWEET10 to modulate stress response in Arabidopsis. Plant Biotechnol J 16: 221-233
    Pieterse CM, Van der Does D, Zamioudis C, Leon-Reyes A, Van Wees SC (2012) Hormonal modulation of plant immunity. Annu Rev Cell Dev Biol 28: 489-521
    Price J, Li TC, Kang SG, Na JK, Jang JC (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol 132: 1424-1438
    Rabinowicz PD, Schutz K, Dedhia N, Yordan C, Parnell LD, Stein L, McCombie WR, Martienssen RA (1999) Differential methylation of genes and retrotransposons facilitates shotgun sequencing of the maize genome. Nature Genetics 23: 305-308
    Radchuk V, Riewe D, Peukert M, Matros A, Strickert M, Radchuk R, Weier D, Steinbiss HH, Sreenivasulu N, Weschke W, Weber H (2017) Down-regulation of the sucrose transporters HvSUT1 and HvSUT2 affects sucrose homeostasis along its delivery path in barley grains. J Exp Bot 68: 4595-4612
    Rashotte AM, Carson SD, To JP, Kieber JJ (2003) Expression profiling of cytokinin action in Arabidopsis. Plant Physiol 132: 1998-2011
    Rennie EA, Turgeon R (2009) A comprehensive picture of phloem loading strategies. Proc Natl Acad Sci U S A 106: 14162-14167
    Revel M, Groner Y (1978) Post-Transcriptional and Translational Controls of Gene-Expression in Eukaryotes. Annual Review of Biochemistry 47: 1079-1126
    Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Current Opinion in Plant Biology 1: 404-411
    Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110
    Rolland F, Baena-Gonzalez E, Sheen J (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu Rev Plant Biol 57: 675-709
    Rombauts S, Dehais P, Van Montagu M, Rouze P (1999) PlantCARE, a plant cis-acting regulatory element database. Nucleic Acids Res 27: 295-296
    Rottmann T, Klebl F, Schneider S, Kischka D, Ruscher D, Sauer N, Stadler R (2018) Sugar Transporter STP7 Specificity for l-Arabinose and d-Xylose Contrasts with the Typical Hexose Transporters STP8 and STP12. Plant Physiol 176: 2330-2350
    Sano R, Suzuki H, Ogawa Y, Dansako T, Sakurai N, Okazaki K, Aoki K, Saito K, Shibata D (2008) Suppression of carotenoid synthesis in transgenic Arabidopsis cultured cells over-expressing the AHL29/SOB3 gene. Plant Biotechnology 25: 573-577
    Schneider S, Schneidereit A, Konrad KR, Hajirezaei MR, Gramann M, Hedrich R, Sauer N (2006) Arabidopsis INOSITOL TRANSPORTER4 mediates high-affinity H+ symport of myoinositol across the plasma membrane. Plant Physiol 141: 565-577
    Schneider S, Schneidereit A, Udvardi P, Hammes U, Gramann M, Dietrich P, Sauer N (2007) Arabidopsis INOSITOL TRANSPORTER2 mediates H+ symport of different inositol epimers and derivatives across the plasma membrane. Plant Physiol 145: 1395-1407
    Senanayake SD, Brian DA (1995) Precise large deletions by the PCR-based overlap extension method. Mol Biotechnol 4: 13-15
    Shah J, Klessig DF (1996) Identification of a salicylic acid-responsive element in the promoter of the tobacco pathogenesis-related beta-1,3-glucanase gene, PR-2d. Plant Journal 10: 1089-1101
    Sherson SM, Alford HL, Forbes SM, Wallace G, Smith SM (2003) Roles of cell-wall invertases and monosaccharide transporters in the growth and development of Arabidopsis. J Exp Bot 54: 525-531
    Shikata M, Ohme-Takagi M (2008) The utility of transcription factors for manipulation of floral traits. Plant Biotechnology 25: 31–36
    Sievers F, Higgins DG (2018) Clustal Omega for making accurate alignments of many protein sequences. Protein Sci 27: 135-145
    Singh M, Gupta A, Laxmi A (2014) Glucose control of root growth direction in Arabidopsis thaliana. J Exp Bot 65: 2981-2993
    Small I (2007) RNAi for revealing and engineering plant gene functions. Curr Opin Biotechnol 18: 148-153
    Sosso D, Luo D, Li QB, Sasse J, Yang J, Gendrot G, Suzuki M, Koch KE, McCarty DR, Chourey PS, Rogowsky PM, Ross-Ibarra J, Yang B, Frommer WB (2015) Seed filling in domesticated maize and rice depends on SWEET-mediated hexose transport. Nat Genet 47: 1489-1493
    Srivastava AC, Ganesan S, Ismail IO, Ayre BG (2008) Functional characterization of the Arabidopsis AtSUC2 Sucrose/H+ symporter by tissue-specific complementation reveals an essential role in phloem loading but not in long-distance transport. Plant Physiol 148: 200-211
    Stec N, Banasiak J, Jasinski M (2016) Abscisic acid - an overlooked player in plant-microbe symbioses formation? Acta Biochim Pol 63: 53-58
    Street IH, Shah PK, Smith AM, Avery N, Neff MM (2008) The AT-hook-containing proteins SOB3/AHL29 and ESC/AHL27 are negative modulators of hypocotyl growth in Arabidopsis. Plant J 54: 1-14
    Sze H, Li X, Palmgren MG (1999) Energization of plant cell membranes by H+-pumping ATPases. Regulation and biosynthesis. Plant Cell 11: 677-690
    Taiz L, Zeiger E (2010) Plants Physiology, Ed 5th. Sinauer Associates, Sinauer Associates
    Takahashi F, Sato-Nara K, Kobayashi K, Suzuki M, Suzuki H (2003) Sugar-induced adventitious roots in Arabidopsis seedlings. J Plant Res 116: 83-91
    Talbot NJ (2010) Cell biology: Raiding the sweet shop. Nature 468: 510-511
    Tamogami S, Rakwal R, Agrawal GK (2008) Interplant communication: airborne methyl jasmonate is essentially converted into JA and JA-Ile activating jasmonate signaling pathway and VOCs emission. Biochem Biophys Res Commun 376: 723-727
    Tao Y, Cheung LS, Li S, Eom JS, Chen LQ, Xu Y, Perry K, Frommer WB, Feng L (2015) Structure of a eukaryotic SWEET transporter in a homotrimeric complex. Nature 527: 259-263
    Taylor NG, Scheible WR, Cutler S, Somerville CR, Turner SR (1999) The irregular xylem3 locus of Arabidopsis encodes a cellulose synthase required for secondary cell wall synthesis. Plant Cell 11: 769-780
    Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14: 310-317
    ToshiyukiNagata, YasuyukiNemoto, SeiichiroHasezawa (1992) Tobacco BY-2 Cell Line as the “HeLa” Cell in the Cell Biology of Higher Plants. International Review of Cytology 132: 1-30
    Ulmasov T, Hagen G, Guilfoyle T (1994) The ocs element in the soybean GH2/4 promoter is activated by both active and inactive auxin and salicylic acid analogues. Plant Mol Biol 26: 1055-1064
    Van der Ent S, Verhagen BW, Van Doorn R, Bakker D, Verlaan MG, Pel MJ, Joosten RG, Proveniers MC, Van Loon LC, Ton J, Pieterse CM (2008) MYB72 is required in early signaling steps of rhizobacteria-induced systemic resistance in Arabidopsis. Plant Physiol 146: 1293-1304
    van Es SW, Silveira SR, Rocha DI, Bimbo A, Martinelli AP, Dornelas MC, Angenent GC, Immink RGH (2018) Novel functions of the Arabidopsis transcription factor TCP5 in petal development and ethylene biosynthesis. Plant J
    van Loon LC, Geraats BPJ, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends in Plant Science 11: 184-191
    Vom Endt D, Soares e Silva M, Kijne JW, Pasquali G, Memelink J (2007) Identification of a bipartite jasmonate-responsive promoter element in the Catharanthus roseus ORCA3 transcription factor gene that interacts specifically with AT-Hook DNA-binding proteins. Plant Physiol 144: 1680-1689
    Wang L, Yao L, Hao X, Li N, Qian W, Yue C, Ding C, Zeng J, Yang Y, Wang X (2018) Tea plant SWEET transporters: expression profiling, sugar transport, and the involvement of CsSWEET16 in modifying cold tolerance in Arabidopsis. Plant Mol Biol 96: 577-592
    Wang Y, Liu GJ, Yan XF, Wei ZG, Xu ZR (2011) MeJA-inducible expression of the heterologous JAZ2 promoter from Arabidopsis in Populus trichocarpa protoplasts. Journal of Plant Diseases and Protection 118: 69-74
    Wang YH, Irving HR (2011) Developing a model of plant hormone interactions. Plant Signal Behav 6: 494-500
    Wei X, Liu F, Chen C, Ma F, Li M (2014) The Malus domestica sugar transporter gene family: identifications based on genome and expression profiling related to the accumulation of fruit sugars. Front Plant Sci 5: 569
    Weigel D, Ahn JH, Blazquez MA, Borevitz JO, Christensen SK, Fankhauser C, Ferrandiz C, Kardailsky I, Malancharuvil EJ, Neff MM, Nguyen JT, Sato S, Wang ZY, Xia Y, Dixon RA, Harrison MJ, Lamb CJ, Yanofsky MF, Chory J (2000) Activation tagging in Arabidopsis. Plant Physiol 122: 1003-1013
    Wingenter K, Schulz A, Wormit A, Wic S, Trentmann O, Hoermiller, II, Heyer AG, Marten I, Hedrich R, Neuhaus HE (2010) Increased activity of the vacuolar monosaccharide transporter TMT1 alters cellular sugar partitioning, sugar signaling, and seed yield in Arabidopsis. Plant Physiol 154: 665-677
    Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An "Electronic Fluorescent Pictograph" browser for exploring and analyzing large-scale biological data sets. PLoS One 2: e718
    Wu FH, Shen SC, Lee LY, Lee SH, Chan MT, Lin CS (2009) Tape-Arabidopsis Sandwich - a simpler Arabidopsis protoplast isolation method. Plant Methods 5: 16
    Xiao C, Chen F, Yu X, Lin C, Fu YF (2009) Over-expression of an AT-hook gene, AHL22, delays flowering and inhibits the elongation of the hypocotyl in Arabidopsis thaliana. Plant Mol Biol 71: 39-50
    Xuan YH, Hu YB, Chen LQ, Sosso D, Ducat DC, Hou BH, Frommer WB (2013) Functional role of oligomerization for bacterial and plant SWEET sugar transporter family. Proc Natl Acad Sci U S A 110: E3685-3694
    Yamada K, Osakabe Y, Mizoi J, Nakashima K, Fujita Y, Shinozaki K, Yamaguchi-Shinozaki K (2010) Functional Analysis of an Arabidopsis thaliana Abiotic Stress-inducible Facilitated Diffusion Transporter for Monosaccharides. Journal of Biological Chemistry 285: 1138-1146
    Yamada K, Saijo Y, Nakagami H, Takano Y (2016) Regulation of sugar transporter activity for antibacterial defense in Arabidopsis. Science 354: 1427-1430
    Yang B, Sugio A, White FF (2006) Os8N3 is a host disease-susceptibility gene for bacterial blight of rice. Proc Natl Acad Sci U S A 103: 10503-10508
    Yoo SD, Cho YH, Sheen J (2007) Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat Protoc 2: 1565-1572
    Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2010) AREB1, AREB2, and ABF3 are master transcription factors that cooperatively regulate ABRE-dependent ABA signaling involved in drought stress tolerance and require ABA for full activation. Plant Journal 61: 672-685
    Yu Y, Streubel J, Balzergue S, Champion A, Boch J, Koebnik R, Feng J, Verdier V, Szurek B (2011) Colonization of rice leaf blades by an African strain of Xanthomonas oryzae pv. oryzae depends on a new TAL effector that induces the rice nodulin-3 Os11N3 gene. Mol Plant Microbe Interact 24: 1102-1113
    Yuan M, Wang S (2013) Rice MtN3/saliva/SWEET family genes and their homologs in cellular organisms. Mol Plant 6: 665-674
    Yuan M, Zhao J, Huang R, Li X, Xiao J, Wang S (2014) Rice MtN3/saliva/SWEET gene family: Evolution, expression profiling, and sugar transport. J Integr Plant Biol 56: 559-570
    Yun J, Kim YS, Jung JH, Seo PJ, Park CM (2012) The AT-hook motif-containing protein AHL22 regulates flowering initiation by modifying FLOWERING LOCUS T chromatin in Arabidopsis. J Biol Chem 287: 15307-15316
    Zhang L, Zhao HK, Dong QL, Zhang YY, Wang YM, Li HY, Xing GJ, Li QY, Dong YS (2015) Genome-wide analysis and expression profiling under heat and drought treatments of HSP70 gene family in soybean (Glycine max L.). Front Plant Sci 6: 773
    Zhao J, Favero DS, Peng H, Neff MM (2013) Arabidopsis thaliana AHL family modulates hypocotyl growth redundantly by interacting with each other via the PPC/DUF296 domain. Proc Natl Acad Sci U S A 110: E4688-4697
    Zheng Q-M, Tang Z, Qiang, Deng X-X (2014) Isolation, phylogenetic relationship and expression profiling of sugar transporter genes in sweet orange (Citrus sinensis). Plant Cell, Tissue and Organ Culture (PCTOC) 119: 609–624
    Zhou J, Wang X, Lee JY, Lee JY (2013) Cell-to-cell movement of two interacting AT-hook factors in Arabidopsis root vascular tissue patterning. Plant Cell 25: 187-201
    Zhou J, Zeng L, Liu J, Xing D (2015) Manipulation of the Xanthophyll Cycle Increases Plant Susceptibility to Sclerotinia sclerotiorum. PLoS Pathog 11: e1004878
    Zimmermann P, Hirsch-Hoffmann M, Hennig L, Gruissem W (2004) GENEVESTIGATOR. Arabidopsis microarray database and analysis toolbox. Plant Physiol 136: 2621-2632

    無法下載圖示 校內:2023-06-26公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE