| 研究生: |
王健彰 Wang, Chien-Chang |
|---|---|
| 論文名稱: |
以渦流法探討微粒子在間歇噴流之擴散 Investigation on Particle Dispersion in Pulsing Jet Using Vortex Method |
| 指導教授: |
洪振益
Hung, Chen-I |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2007 |
| 畢業學年度: | 95 |
| 語文別: | 中文 |
| 論文頁數: | 112 |
| 中文關鍵詞: | 渦流法 、兩相流 、相聯結 、間歇噴流 |
| 外文關鍵詞: | phase coupling, two-phase flow, pulsing jet, vortex method |
| 相關次數: | 點閱:103 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究採用渦流法模擬兩相平面噴流場,主要研究目的在於探討外加激擾對粒子擴散之影響。
本文首先探討不同雷諾數之單相噴流場特性,模擬結果顯示採用隨機走步式之渦流法可成功模擬出層流與紊流流場之特性,其模擬結果與文獻的實驗數據一致。
本研究所使用的激擾方式在於噴口施加縱向激擾波以形成間歇噴流,模擬結果發現此種激擾方式可產生具有空間對稱性之渦偶結構,且於特定激擾頻率可產生leap-frogging現象。此外,可藉由人工調配激擾頻率的大小,控制流場中渦流結構的發展方式,以抑制噴流場偏擺(flapping)現象的發生,在本研究中尤以激擾頻率為0.2之流場具有較佳之代表性。
最後於噴口放入不同Stokes number的粒子,研究結果發現粒子的擴散現象深受渦流結構所影響,對於St<<O(1)的粒子而言,本研究所使用的激擾方式無法得到較佳的擴散變異量;St>>O(1)的粒子則可藉由低頻激擾得到較佳的擴散變異量。
The evolution of particle-laden plane jet is simulated by the vortex method. The objective of this study is to examine the effects of excitations on particle dispersion in pulsing jet.
The various Reynolds number is applied to investigate the evolution of the free jet. The results display the laminar and turbulent flow filed can be simulated by the vortex method with random walk. In addition, the computational results show in good agreement with those of available literatures.
The present study uses longitudinal periodic disturbance on the jet exit to form a pulsing jet. The results display spatially symmetric dipole structure can be generated by this forcing type, and the leap-frogging process is achieved successfully by specific forcing frequency. In addition, the flapping phenomenon of the plane jet can be suppressed by this forcing type, and the flow field of forcing frequency fp=0.2 shows better performance.
Finally, the study investigates the particle-laden jet by various forcing frequency. Results show that large coherent structure strongly influences the particle dispersion process. For small value of Stokes number, this forcing type scarcely influences particle dispersion process. In contrast, for large value of Stokes number, the particle dispersion process can be modified by this forcing type, and achieved a better dispersion variance using low-frequency forcing.
[1] Armenio, V. and Fiorotto, V., “The Importance of the Forces Acting on Particles in turbulent Flows,” Physics of Fluids, Vol. 13, No. 8, pp. 2437-2440, 2001.
[2] Baranyi, L. and Lewis, R. I., “Comparison of a Grid-Based CFD Method and Vortex Dynamics Predictions of Low Reynolds Number Cylinder Flows,” The Aeronautical Journal, pp.63-71, 2006.
[3] Brown, F. K. and Roshko, A., “On Density Effect and Large Structure in Turbulence Mixing Layers,” J. Fluid Mech., Vol. 64, pp. 775-816, 1974.
[4] Chein, R. and Chung, J. N., “Effects of Vortex Pairing on Particle Dispersion in Turbulent Shear Flows,” Int. J. Multiphase Flow, Vol. 13, No. 6, pp. 785-802, 1987.
[5] Chorin, A. J., “Numerical Study of Slightly Viscous Flow,” J. Fluid Mech., Vol.57, pp. 785-796, 1973.
[6] Chung, J. N. and Troutt, T. R., “Simulation of Particle Dispersion in an Axisymmetric Jet,” J. Fluid Mech., Vol. 186, pp. 199-222, 1988.
[7] Clift, R., Grace, J. N. and Weber, M. E., Bubbles, Drops and Particles, Academic Press, New York, 1978.
[8] Cottet, G. H. and Koumoutsakos, P. D., Vortex Method-Theory and Practices, Cambridge University Press, 2000.
[9] Crow, S. C. and Champagme, F. H., “Orderly Structure in Jet Turbulence,” J. Fluid Mech., Vol. 48, pp. 547-591, 1970.
[10] Crowe, C. T., Sommerfeld, M. and Tsuji, Y., Multiphase Flows with Droplets and Particles, Fla.: CRC Press, Boca Ration, 1998.
[11] De Gortari, J. C. and Goldschmidt, V. W., “The Apparent Flapping Motion of a Turbulent Plane Jet-Further Experimental Results,” Journal of Fluids Engineering, Vol. 103, pp. 119-126, 1981.
[12] Fleckhaus, D., Hishida, K., and Maeda, M., “Effect of Laden Solid Particles on the Turbulent Flow Structure of a Round Jet,” Experiments in Fluids, Vol. 5, No. 5, pp. 323-333, 1987.
[13] Forthmann, E., “Uber Turbulente Strahlausbreitung,” Ing. Arch., Vol. 5, pp. 42-54, 1934.
[14] Garcia, J. and Crespo, A., “A Turbulent Model for Gas-Particle Jets,” Journal of Fluids Engineering, Vol. 122, pp. 505-509, 2000.
[15] Green, S. I., Fluid Vortices, Kluwer Academic Publishers, Dordrecht, 1995.
[16] Gutmark, E. and Ho, C. M., “Preferred Modes and the Spreading Rates of Jets,” Physics of Fluids, Vol. 26, pp. 2932-2938, 1983.
[17] Ho, C. M. and Huang, L. S., “Subharmonics and Vortex Merging in Mixing Layer,” J. Fluid Mech., Vol. 105, pp. 115-142, 1981.
[18] Hsu, C. C., Vortex Method Investigations on Dynamic Behaviors of Forced Turbulent Mixing Layer and Planar Jet, Ph.D. Dissertation, Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, Taiwan, 1994.
[19] Hsu, C. C., Chang, J. R., Hsiao, F. B. and Ha, J. L., “Dynamic Behaviors of The Mixing-Layer Development under Transverse Periodic Forcing,” Journal of Air Force Institute of Technology, Vol. 3, No. 1, pp. 61-68, 2004.
[20] Huang, J. M. and Hsiao, F. B., “On the Mode Development in the Developing Region of a Plane Jet,” Physics of Fluids, Vol. 11, No. 7, pp. 1847-1857, 1999.
[21] Huang, Y., Wu, W. and Zhang, H, “Numerical Study of Particle Dispersion in the Wake of Gas-Particle Flows Past a Circular Cylinder Using Discrete Vortex Method,” Powder Technology, Vol. 162, pp. 73-81, 2006.
[22] Hussain, A. K. F. and Thompson, C. A., “Controlled Symmetric Perturbation of the Plane Jet: an Experimental Study in the Initial Region,” J. Fluid Mech., Vol. 100, pp. 397-431, 1980.
[23] Inoue, O., “Vortex Simulation of a Turbulent Mixing Layer,” AIAA J., Vol. 23, pp. 367-373, 1985.
[24] Inoue, O. and Leonard, A., “Vortex Simulation of Forced/Unforced Mixing Layers,” AIAA J., Vol. 25, No. 11, pp. 1417-1418, 1987.
[25] Inoue, O., “Double-Frequency Forcing on Spatially Growing Mixing Layers,” J. Fluid Mech., Vol. 234, pp. 553-581, 1992.
[26] Kibens, V., “Discrete Noise Spectrum Generated by an Acoustically Excited Jet,” AIAA J., Vol. 18, pp. 434-441, 1980.
[27] Klein, M., Sadiki, A. and Janicka, J., “Investigation of the Influence of the Reynolds Number on a Plane Jet Using Direct Numerical Simulation,” International Journal of Heat and Fluid Flow, Vol. 24, pp.785-794, 2003.
[28] Kleinstreuer, C., Two-Phase Flow: Theory and Applications, Taylor & Francis, New York, 2003.
[29] Knystautas, R., “The Turbulent Jet from a Series of Holes in Line,” Aero. Quart., Vol. 15, pp. 1-28, 1964.
[30] Krasny, R., “Numerical Simulation of Vortex Sheet Evolution,” Fluid Dynamics Research, Vol. 3, pp. 93-97, 1988.
[31] Kruger, P. S. and Gharib, M., “Thrust Augmentation and Vortex Ring Evolution in a Fully Pulsed Jet,” AIAA J., Vol. 43, No. 4, pp.792-801, 2005.
[32] Lemieux, G. P. and Oosthuizen, P. H., “Experimental Study of the Behavior of Plane Turbulent Jets at Low Reynolds Numbers,” AIAA J., Vol. 23, No. 12, pp. 1845-1846, 1985.
[33] Leonard, A., “Vortex Methods for Flow Simulation,” Journal of Computational Physics, Vol. 37, pp. 289-335, 1980.
[34] Lewis, R. I., Vortex Element Methods for Fluid Dynamic Analysis of Engineering Systems, Cambridge University Press, Cambridge, 1991.
[35] Lim, T. T., “A Note on the Leapfrogging between Two Coaxial Vortex Rings at Low Reynolds Numbers,” Physics of Fluids, Vol. 9, pp.239-241, 1997.
[36] Longmire, E. K. and Eaton, J. K., “Active Open-Loop Control of Particle Dispersion in Round Jets,” AIAA J., Vol. 32, No. 3, pp. 555-563, 1994.
[37] Marshall, J. S., Inviscid Incompressible Flow, John Wiley & Sons, INC., 2001.
[38] Miller, D. R. and Comings, E. W., “Static Pressure Distribution in the Free Turbulence Jet,” J. Fluid Mech., Vol. 3, pp. 1-16, 1957.
[39] Modarress, D., Elghobashi, S. and Tan, H., “Two-Component LDA Measurement in a Two-Phase Turbulent Jet,” AIAA J., Vol. 22, No. 5, pp. 624-630, 1984.
[40] Namer and Otiigen, M. V., “Velocity Measurements in a Plane Turbulent Air Jet at Moderate Reynolds Numbers,” Experiments in Fluids, Vol. 6, pp. 387-399, 1988.
[41] Oster, D. and Wygnanski, I., “The Forced Mixing Layer between Parallel Streams,” J. Fluid Mech., Vol. 123, pp. 91-130, 1982.
[42] Platzer, M. F., Simmons, J. M. and Bremhorst, K., “Entrainment Characteristics of Unsteady Subsonic Jets,” AIAA J., Vol. 16, No. 3, pp. 282-284, 1978.
[43] Pozrikidis, C., Introduction to Theoretical and Computational Fluid Dynamics, Oxford University Press, 1997.
[44] Reynolds, W. C., Parekh, D. E., Juvet, P. J. D. and Lee, M. J. D., “Bifurcating and Blooming Jets,” Annual Review of Fluid Mechanics, Vol. 35, pp.295-315, 2003.
[45] Roshko, A., “Structure of Shear Flows: a New Look,” AIAA J., Vol. 14, No. 10, pp. 1349-1357, 1976.
[46] Sato, H. and Sakao, F., “An Experimental Investigation of the Instability of a Two-Dimensional Jet at Low Reynolds Numbers,” J. Fluid Mech., Vol. 20, pp.337-352, 1964.
[47] Schlichting, H., Boundary Layer Theory, McGraw-Hill, New York, 1979.
[48] Thomas, F. O., “Structure of Mixing Layers and Jets,” Applied Mechanics Reviews, Vol. 44, No. 3, pp. 119-150, 1991.
[49] Uchiyama, T. and Naruse, M., “Vortex Simulation of Slit Nozzle Gas-Particle Two-Phase Jet,” Power Technology, Vol. 131, pp. 156-165, 2003.
[50] Voropayev, S. I., Afanasyev, Y. D. and Filippov, I. A., “Horizontal Jets and Vortex dipoles in a Stratified Fluid,” J. Fluid Mech., Vol. 227, pp.543-566, 1991.
[51] Wen, F., Kamalu, N., Chung, J. N., Crowe, C. T. and Troutt, T. R., “Particle Dispersion by Vortex Structures in Plane Mixing Layers,” Journal of Fluids Engineering, Vol. 114, pp. 657-666, 1992.
[52] Winant, C. D. and Browand, F. K., “Vortex Pairing-the Mechanism of Turbulent Mixing-Layer Growth at Moderate Reynolds Number,” J. Fluid Mech., Vol. 63, pp. 237-255, 1974.
[53] Yamada, H. and Matsui, T., “Preliminary Study of Mutual Slip-Through of a Pair of Vortices,” Physics of Fluids, Vol. 21, pp. 292-294, 1978.
[54] Yuu, S., Kohno, T. and Umekage, T., “Effect of Particle Existence on High Reynolds Number Slit Nozzle Gas-Particle Two-Phase Jet,” JSME, Vol. 44, pp. 204-212, 2001.
[55] 梁家智,“激擾作用下氣-固兩相噴流之數值研究”,國立成功大學機械工程研究所碩士論文,2006。