簡易檢索 / 詳目顯示

研究生: 林立為
Lin, Li-Wei
論文名稱: 回收改質瀝青之可用比例和工程性質
Available Ratio and Engineering Properties of Recycled Modified - Asphalt (RMA)
指導教授: 陳建旭
Chen, Jian-Shih
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 206
中文關鍵詞: 再生改質瀝青可用比例老化萃取與回收SBS降解
外文關鍵詞: RMA, AR, Aging, Extraction and Recovery, Degrade
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究將傳統瀝青和回收改質瀝青混凝土 (RMAP) 以實驗室拌和產製再生改質瀝青混凝土 (RMAC),建立可用比例 (AR) 方法,採用重複應力潛變恢復試驗 (MSCR) 分析新鮮瀝青與老化瀝青的混拌效果,以此決定最佳瀝青用量,作為再生改質瀝青混凝土 (RMAC) 配合設計之依據。研究結果說明RMAP含量的增加,可用比例也將隨之提升,老化瀝青的活化比例愈高。將AC-10、改質瀝青 (SBS_S) 經過不同溫度、時間的滾動薄膜烘箱 (RTFOT) 老化後,藉由黏度、針入度、軟化點、彈性回復率、傅立葉轉換紅外光譜 (FTIR) 和黏彈性試驗,評估瀝青老化後的物性與化性,同時以反射式光學顯微鏡評估微觀型態,結果顯示瀝青老化後將提升勁度,RTFOT後的SBS_S呈絲狀交聯的聚合物連續相,初期老化後則開始出現部分降解、交聯結構破壞的情形。SBS_S溶於甲苯後,改質劑SBS發生膨潤現象將軟化改質劑且降低勁度和硬度,但不影響化學結構和彈性性能,根據交叉比對的結果顯示,混合料經製程老化後,導致SBS機械和光氧降解,短期老化後則降解趨緩。另外,再生改質瀝青 (RMA) 的改質劑降解情形不明顯,說明40%以上RMAP的RMA仍保有彈性體改質瀝青的工程性質。

    In this study, the conventional binder and Reclaimed Modified Asphalt Pavement (RMAP) were mixed in the laboratory to produce Recycled Modified Asphalt Concrete (RMAC). Available Ratio (AR) method was established as the blending effect between virgin asphalt and aging binder from RMAP, which served as the basis for the design of recycled modified asphalt concrete (RMAC). Additionally, Optimum Asphalt Content (OAC) was determined by using the Multiple Stress Creep Recovery Test (MSCR). The results of the study indicated that the value of AR becomes larger as the content of RMAP increased, which means that more aging binder was activated. In addition, AC-10 and SBS_S polymer modified asphalt and were aged in a Rolling Thin-Film Oven Test (RTFOT) at different temperatures and times. The binder tests were divided into four parts: physical properties, rheology property, chemical properties included Fourier Transform Infrared Spectroscopy (FTIR), and microstructure for the binder tests. The results showed that the stiffness increased after aging. SBS_S after RTFOT was a polymer-continuous phase of filamentous cross-linked. After aging, partial degradation and destruction of the cross-linked structure began to occur. The imbibition phenomenon of the modifier SBS will soften the modifier as soon as SBS_S was dissolved in toluene, but it did not affect the chemical structure and elastic properties. Moreover, the degradation of the modifier of Recycled-Modified Asphalt (RMA) was not obvious. When RMAC contained more than 40% RMAP, its RMA still retained the engineering properties of elastomer modified asphalt.

    摘要 I Extended Abstract II 誌謝 VII 目錄 IX 圖目錄 XIII 表目錄 XVI 第一章 緒論 1-1 1.1 前言 1-1 1.2 研究動機 1-3 1.3 研究目的 1-4 1.4 研究範圍 1-4 第二章 文獻回顧 2-1 2.1 改質瀝青 (Modified Asphalt, MA) 2-1 2.1.1 苯乙烯-丁二烯-苯乙烯(Styrene-Butadiene-Styrene, SBS) 2-2 2.2 瀝青老化 2-4 2.2.1 短期老化與長期老化 2-5 2.2.2 老化表示方式 2-6 2.2.3 實驗室瀝青老化 2-7 2.3 聚合物降解 (Polymer Degradation) 2-8 2.3.1 高分子SBS降解 2-9 2.4 微觀型態 (Micromorphology) 2-11 2.4.1 顯微鏡下的改質瀝青 2-11 2.5 瀝青組分試驗 2-14 2.5.1 拉曼光譜 (Raman Spectroscopy) 2-14 2.5.2 Fourier-Transform Infrared Spectroscopy (FTIR) 2-16 2.6 重複應力潛變恢復試驗 (Multiple Stress Creep Recovery , MSCR) 2-20 2.7 再生瀝青混凝土配合設計 (RMAC) 2-22 2.7.1 傳統體積配合設計 (Traditional Volumetric Method) 2-22 2.7.2 完全拌和法 (Total Blending) 2-23 2.7.3 部分拌和法 (Partial Blending) 2-24 2.7.4 再生瀝青混凝土-喬治亞州交通廳 (GDOT) 2-29 2.8 萃取與回收試驗 (Extraction and Recovery) 2-30 第三章 研究計畫 3-1 3.1 研究流程 3-1 3.1.1 瀝青黏結料 3-1 3.1.2 瀝青混凝土 3-3 3.1.3 研究計畫統整 3-5 3.2 試驗材料 3-6 3.2.1 基底瀝青 3-6 3.2.2 改質劑 (Modifier) 3-7 3.2.3 助溶劑 (Compatibilizer) 3-8 3.2.4 天然粒料物理性質 3-9 3.2.5 回收改質瀝青混凝土物理性質 3-10 3.3 實驗室製備的改質瀝青 (SBS_S) 3-10 3.3.1 改質瀝青拌和流程 (SBS_S) 3-11 3.3.2 改質瀝青的基本性質 (SBS_S) 3-12 3.4 瀝青試驗 3-13 3.4.1 微觀型態 3-13 3.4.2 黏度 3-15 3.4.3 針入度 3-15 3.4.4 軟化點 3-15 3.4.5 彈性回復率 3-16 3.4.6 離析 3-16 3.4.7 老化試驗 3-17 3.4.8 萃取與回收試驗 3-19 3.4.9 質流性質 3-21 3.4.10 Fourier-Transform Infrared Spectroscopy (FTIR) 3-28 3.5 密級配瀝青混凝土配合設計 3-34 3.5.1 密級配改質瀝青混凝土配合設計(對照組) 3-34 3.5.2 製備再生改質瀝青混凝土(實驗組) 3-35 3.5.3 老化瀝青活性-以乾拌試驗且未添加新鮮瀝青 3-37 3.5.4 瀝青混合料老化 3-38 第四章 結果與討論 4-1 4.1 材料性質 4-1 4.1.1 瀝青的基本物理性質 4-1 4.1.2 粒料物理性質 4-3 4.2 瀝青之微觀型態和物理性質 4-5 4.2.1 傳統瀝青AC-10 4-6 4.2.2 SBS_S改質瀝青 4-14 4.3 新鮮密級配瀝青混凝土 4-25 4.3.1 AC-10瀝青混凝土 4-27 4.3.2 SBS_S改質瀝青混凝土 4-29 4.4 再生改質密級配瀝青混凝土 4-30 4.4.1 20% RMAP混合料 4-31 4.4.2 40% RMAP混合料 4-35 4.4.3 60% RMAP混合料 4-39 4.4.4 質流性質與RMAP比例間的關係 4-43 4.4.5 老化瀝青活性-乾拌試驗 4-46 4.5 回收瀝青之微觀型態與物性 4-47 4.5.1 傳統瀝青AC-10 4-48 4.5.2 SBS_S改質瀝青 4-50 4.5.3 AC-10瀝青混凝土 4-53 4.5.4 SBS_S改質瀝青混凝土 4-62 4.5.5 現地老化瀝青 (RMAP) 4-74 4.5.6 再生改質瀝青混凝土 (RMAC) 4-76 第五章 結論與建議 5-1 5.1 結論 5-1 5.2 建議 5-3 參考文獻 參-1 附錄 附-1

    行政院公共工程委員會,施工綱要規範第02966章:再生瀝青混凝土。
    李志鴻 (2016) 再生改質瀝青混凝土之工程性質,國立成功大學土木工程研究所碩士論文,台南。
    李明樵 (2014) 老化瀝青拌和還原劑之工程和化學性質,國立成功大學土木工程研究所碩士論文,台南。
    李政德 (2019) 改質瀝青黏結料之微觀組成與工程性質,國立成功大學土木工程研究所博士論文,台南。
    李晨豪 (2021) 再生改質瀝青混凝土之開裂性質,國立成功大學土木工程研究所碩士論文,台南。
    李 偉 (2014) 一種改性瀝青中SBS改性劑含量的檢測方法,中華人民共和國國家知識產權局,申請號201410524720.8,北京。
    林正宏 (1981) 膨潤效應對SBS熱可塑性橡膠之影響,國立清華大學高分子研究所碩士論文,新竹。
    高大宇 (2004) 以FTIR探討 2,2-二甲基-3-乙基-3-戊醇與 3-乙基-2-甲基-3-戊醇兩種具有立體障礙醇類的氫鍵自結合現象,國立交通大學應用化學研究所博士論文,新竹。
    陳世梵 (2016) 再生改質瀝青混凝土性質和績效評估,國立成功大學土木工程研究所博士論文,台南。
    Adedeji, A., T. Grunfelder, F.S. Bates, and C.W. Macosko (1996) Asphalt modified by SBS triblock copolymer: Structures and properties. Polymer Engineering and Science, 36(12): 1707-1723.
    American Association of State Highway and Transportation Officials (AASHTO) (2014) Standard Method of Test for Multiple Stress Creep Recovery (MSCR) Test of Asphalt Binder Using a Dynamic Shear Rheometer (DSR), AASHTO T350, Washington, D.C.
    American Association of State Highway and Transportation Officials (AASHTO) (2017) Standard Specification for Superpave Volumetric Mix Design, AASHTO M323, Washington, D.C.
    Anderson, D.A., and T.W. Kennedy (1993) Development of SHRP binder specification. Journal of the Association of Asphalt Paving Technologists, 62: 481-507.
    Anderson, R.M. (2012) SEAUPG Evaluation of MSCR recovery as a replacement for PG Plus Tests. Asphalt Institute, Lexington, Kentucky.
    Asphalt Institute (2014) Asphalt Mix Design Methods, MS-2, 7th edition, Lexington, KY.
    Behnood, A., and M.M. Gharehveran (2019) Morphology, rheology, and physical properties of polymer-modified asphalt binders. European Polymer Journal, 112: 766-791.
    Bell, C.A. (1989) Aging of Asphalt-Aggregate Systems. SR-OSU-A-003A-89-2, Oregon State University, Corvallis, Oregon.
    Blankenship, P., D. Hanson, and W.D. Buttlar. (2008) Laboratory aging procedures to simulate and evaluate aging of asphalt binders and hot-mix asphalt mixtures. 88th Annual Meeting of the Transportation Research Board, Washington, D.C.
    British Standards (2013) Bituminous Mixtures. Test Methods for Hot Mix Asphalt. Bitumen Recovery: Rotary Evaporator. BS EN12697-3, London.
    Celestine, A.N., V. Agrawal, and B. Runnels (2020) Experimental and numerical investigation into mechanical degradation of polymers. Composites Part B: Engineering, 201: 108369.
    Cheng, Y., Q. Zhang, C. Fang, Y. Ouyang, J. Chen, X. Yu, and D. Liu (2018) Co-carbonization behaviors of petroleum pitch/waste SBS: Influence on morphology and structure of resultant cokes. Journal of Analytical and Applied Pyrolysis, 129: 154-161.
    Cortizo, M.S., D.O. Larson, H. Bianchetto, and J.L. Alessandrini (2004) Effect of the thermal degradation of SBS copolymers during the ageing of modified asphalts. Polymer Degradation and Stability, 86: 275-282.
    D’angelo, J., R. Kluttz, R. Dongré, K. Stephens , and L. Zanzotto (2007) Revision of the Superpave high temperature binder specification: the multiple stress creep recovery test. Journal of the Association of Asphalt Paving Technologists, 76: 123-162.
    D’angelo, J. (2010) The multiple stress creep recovery (MSCR) procedure. FHWA-HIF-11-038, Washington, D.C.
    Federal Highway Administration (2002) RAP and Superpave: An Excellent Blend. FHWA-RD-02-009, Washington, D.C.
    Hao, G., Y. Wang, K. Zhao, and W. Huang (2020) Property changes of SBS modified asphalt binders during short-term aging and implications on quality management. Construction and Building Materials, 244: 118323.
    Haron, B. (2020) Georgia addresses pavement performance problems linked to high RAP usage. The Magazine of The Asphalt Institute, 35(3): 29-33.
    Hossain, Z., M. Zaman, and D. Ghosh (2015) Creep compliance and percent recovery of Oklahoma certified binder using the multiple stress recovery (MSCR) method. Oklahoma Department of Transportation, Oklahoma, OK 73105-3204.
    Hugener, M. and M. Pittet (2016) Extraction and recovery of polymer modified bitumen. 6th Eurasphalt & Eurobitume Congress, Praque.
    Kandhal, P.S., and M.E. Wenger (1975) Asphalt properties in relation to pavement performance. Transportation Research Record, 544: 1-13.
    Kaya, D., A. Topal, and T. McNally (2019) Relationship between processing parameters and aging with the rheological behaviour of SBS modified bitumen. Construction and Building Materials, 221: 345-350.
    Khairuddin, F.K., N.I.Md. Yusof, K. Badri, H. Ceylan, and S.N.Mohd. Tawil (2019) Thermal, chemical and imaging analysis of Polyurethane / Cecabase modified bitumen. Materials Science and Engineering, 512, 012032.
    Kong, X.M. (1998) Microscopic observation of polymer-modified bitumen. Building Material, 8: 43-44.
    Kou, C. P. Xiao, A. Kang, P. Mikhailenko, H. Baaj, and Z. Wu (2017) Protocol for the morphology analysis of SBS polymer modified bitumen images obtained by using fluorescent microscopy. International Journal of Pavement Engineering, 20(5): 585-591.
    Larsen, D.O., J.L. Alessandrini, A. Bosch, and M. Susana Cortizo (2009) Micro-structural and rheological characteristics of SBS-asphalt blends during their manufacturing. Construction and Building Materials, 23(8): 2769-2774.
    Liu, H., P. Hao, H. Wang, and S. Adhikair (2014) Effects of physio-chemical factors on asphalt aging behavior. Journal of Materials in Civil Engineering, 26(1): 190-197.
    Lu, X., and U. Isacsson (1999) Chemical and rheological characteristics of styrene-butadiene-styrene polymer-modified bitumens. Transportation Research Record, 1661: 83-92.
    Mastrofini, D., and M. Scarsella (2000) The application of rheology to the evaluation of bitumen ageing. Construction and Building Materials, 79(9):1005-1015.
    McDaniel, R.S., H. Soleymani, R.M. Anderson P. Turner, and R. Peterson (2001) Recommended Use of Reclaimed Asphalt Pavement in the Superpave Mix Design Method. NCHRP Report 452, Transportation Research Board of the National Academic, Washington, D.C.
    Nösler, I, T. Tanghe, and H. Soenen (2008) Evaluation of binder recovery methods and the influence on the properties of polymer modified bitumen. 4th Eurasphalt & Eurobitume Congress, Copenhagen.
    Oliver, J. and P. Tredrea (1998) Relationship between asphalt rut resistance and binder rheological properties. Journal of the Association of Asphalt Paving Technologists, 67: 623-643.
    Pauli, A.T., R.W. Grimes, A.G. Bemmer, T.F. Turner, and J.F. Branthaver (2011) Morphology of asphalts, asphalt fractions and model wax-doped asphalts studied by atomic force microscopy. International Journal of Pavement Engineering, 12(4): 291-309.
    Petersen, J.C., R.E. Robertson, J.F. Branthaver, P.M. Harnberger, J.J. Duvall, S.S. Kim, D.A. Anderson, D.W. Chirstiansen, and H.U. Bahia (1994) Binder Characterization and Evaluation Volunm 1, SHRP-A-367, Strategic Highway Research Program, Washington D.C.
    Shirodkar, P., Y. Mehta, A. Nolan, K. Sonpal, A. Norton, and C. Tomlinson (2011) A study to determine the degree of partial blending of reclaimed asphalt pavement (RAP) binder for high RAP hot mix asphalt. Construction and Building Materials, 25(1): 150-155.
    Siddiqui, M.N. and M.F. Ali (1999) Investigation of chemical transformations by NMR and GPC during the laboratory aging of Arabian asphalt. Fuel, 78(12): 1407-1416.
    Singh, D., S. Girimath, and P.K. Ashish (2018) Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests. Journal of Materials in Civil Engineering, 30(3): 04018004.
    Valkering, C. P., and W. Vonk (1990) Thermoplastic rubbers for the modification of bitumens: improved elastic recovery for high deformation resistance of asphalt mixes. Australian Road Research Board (ARRB) Conference, 15th, 01431050, Sydney.
    Wang, S. and W. Huang (2021) Investigation of aging behavior of terminal blend rubberized asphalt with SBS polymer. Construction and Building Materials, 267: 120870.
    Wu, S., L. Pang, G. Liu, and J. Zhu (2010) Laboratory study on ultraviolet radiation aging of bitumen. Journal of Materials in Civil Engineering, 22(8): 767-772.
    Wu, S., L. Pang, L. Mo, Y. Chen, and G. Zhu (2009) Influence of aging on the evolution of structure, morphology and rheology of base and SBS modified bitumen. Construction and Building Materials, 23: 1005-1010.
    Xu, J., L. Sun, J. Pei, B. Xue, T. Liu, and R. Li (2021) Microstructural, chemical and rheological evaluation on oxidative aging effect of SBS polymer modified asphalt. Construction and Building Materials, 267: 121028.
    Xu, M., Y. Zhang, P. Zhao, and C. Liu (2020) Study on aging behavior and prediction of SBS modified asphalt with various contents based on PCA and PLS analysis. Construction and Building Materials, 265: 120732.
    Yu., S., S. Shen, C. Zhang, W. Zhang, and X. Jia (2017) Evaluation of the blending effectiveness of reclaimed asphalt pavement binder. Journal of Materials in Civil Engineering, 29(12): 04017230.
    Yu., S., S. Shen, X. Zhou, and X. Li (2018) Effect of partial blending on high content reclaimed asphalt pavement (RAP) and mixture properties. Transportation Research Record, 2672(28): 79-87.
    Zhang, F., J. Yu, and J. Han (2011) Effects of thermal oxidative ageing on dynamic viscosity, TG/DTG, DTA and FTIR of SBS- and SBS/sulfur-modified asphalts. Construction and Building Materials, 25(1): 129-137.

    無法下載圖示 校內:2026-06-26公開
    校外:2026-06-26公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE