簡易檢索 / 詳目顯示

研究生: 吳以璿
Wu, Yi-Xuan
論文名稱: 建立以信使核糖核酸介導之粒線體DNA快速移除策略
Rapid depletion of mitochondrial DNA by mitoEcoRI mRNA
指導教授: 余佳益
Yu, Chia-Yi
學位類別: 碩士
Master
系所名稱: 醫學院 - 微生物及免疫學研究所
Department of Microbiology & Immunology
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 70
中文關鍵詞: 粒線體去氧核醣核酸ρ0 細胞信使核糖核酸ImageJ 軟體分析
外文關鍵詞: mitochondrial DNA, mRNA, ρ0 cell, ImageJ analysis
相關次數: 點閱:182下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中文摘要I 英文延伸摘要 II 誌謝 VII 目錄IX 圖示目錄XI 緒論12 一、 粒線體的功能及參與機制12 二、 粒線體標的序列之運用12 三、 粒線體去氧核醣核酸於生理功能的角色13 四、 建立粒線體去氧核醣核酸移除之細胞策略14 五、 粒線體去氧核醣核酸具有限制內切酶 EcoRI 之剪切位15 六、 信使核醣核酸之特性及運用16 七、 研究動機17 材料與方法18 一、 細胞及培養方式18 二、 螢光染色法18 1. 粒線體去氧核醣核酸(mtDNA) 影像呈現18 2. 建立定量 mtDNA 移除效率之方法19 三、 點擊化學反應 (CLICK chemistry reaction) 19 四、 質體 DNA19 五、 質體 DNA 製備19 六、 體外轉錄 (In vitro transcription, IVT)20 七、 細胞轉染20 1. 質體 DNA 轉染20 2. IVT RNA 轉染 21 八、 西方墨點法21 九、 流式細胞儀分析22 十、 細胞總 DNA 萃取22 十一、聚合酶連鎖反應22 1. KOD Hot Start DNA Polymerase Kit (Novagen)22 2. DreamTaq Green PCR Master Mix (2X) (ThermoScientific)23 3. KAPA HiFi HotStart PCR Kit (KapaBiosystems)23 十二、即時定量聚合酶連鎖反應23 十三、 Poly-A tailing23 十四、 ImageJ 軟體影像分析23 1. 細胞質總面積分析方法23 2. 細胞顆數計數方法24 3. 參數調整25 十五、引子28 實驗結果29 一、 粒線體去氧核醣核酸影像呈現29 二、 不同加工方式之 mCherry RNA 於不同轉染時間的螢光蛋白表現狀況30 三、 攜帶粒線體標的序列之 mCherry 蛋白於細胞表現狀況 31 四、 細胞轉染 CmitoEcoRIA RNA 後 mtDNA 表現情況32 五、 細胞轉染 CmitoCherryEcoRIA RNA 後 mtDNA 表現情況33 六、 建立定量 mtDNA 移除效率之方法34 七、 不同物種細胞轉染 CmitoEcoRIA RNA 後 mtDNA 表現情況36 八、 結論37 討論38 參考文獻41 圖示48

    Nolfi-Donegan, D., Braganza, A., & Shiva, S. (2020). Mitochondrial electron transport chain: Oxidative phosphorylation, oxidant production, and methods of measurement Redox Biology, 37, 101674.
    Mishra, N. S., Tuteja, R., & Tuteja, N. (2006). Signaling through MAP kinase networks in plants. Archives of Biochemistry and Biophysics, 452(1), 55-68.
    Joyce, C. M., & Steitz, T. A. (1995). Polymerase structures and function: variations on a theme? J Bacteriol, 177(22), 6321-6329.
    Barclay, C. J. (2015). Energetics of contraction. Compr Physiol, 5(2), 961-995. Rossi, A., Pizzo, P., & Filadi, R. (2019). Calcium, mitochondria and cell metabolism: A functional triangle in bioenergetics. Biochimica et Biophysica Acta (BBA) - MolecularCell Research, 1866(7), 1068-1078.
    Abate, M., Festa, A., Falco, M., Lombardi, A., Luce, A., Grimaldi, A., Zappavigna, S., Sperlongano, P., Irace, C., Caraglia, M., & Misso, G. (2020). Mitochondria as playmakers of apoptosis, autophagy and senescence. Seminars in Cell & Developmental Biology, 98, 139-153.
    Cadenas, E., & Davies, K. J. A. (2000). Mitochondrial free radical generation, oxidative stress, and aging11This article is dedicated to the memory of our dear friend, colleague, and mentor Lars Ernster (1920–1998), in gratitude for all he gave to us. Free Radical Biology and Medicine, 29(3), 222-230.
    Chan, D. C. (2012). Fusion and Fission: Interlinked processes critical for mitochondrial health. Annual Review of Genetics, 46(Volume 46, 2012), 265-287. Omura, T. (1998). Mitochondria-Targeting Sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. The Journal of Biochemistry, 123(6), 1010-1016.
    Gyimesi, G., & Hediger, M. A. (2020). Sequence features of mitochondrial transporter protein families. Biomolecules, 10(12), 1611.
    Busch, J. D., Fielden, L. F., Pfanner, N., & Wiedemann, N. (2023). Mitochondrial protein transport: Versatility of translocases and mechanisms. Molecular Cell, 83(6), 890-910.
    Kadenbach, B., & Hüttemann, M. (2015). The subunit composition and function of mammalian cytochrome c oxidase. Mitochondrion, 24, 64-76.
    Galati, D., Srinivasan, S., Raza, H., Prabu, S. K., Hardy, M., Chandran, K., Lopez, M., Kalyanaraman, B., & Avadhani, N. G. (2009). Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J, 420(3), 439-449.
    Patterson, T. E., & Poyton, R. O. (1986). COX8, the structural gene for yeast cytochrome c oxidase subunit VIII. DNA sequence and gene disruption indicate that subunit VIII is required for maximal levels of cellular respiration and is derived from a precursor which is extended at both its NH2 and COOH termini. Journal of Biological Chemistry, 261(36), 17192-17197.
    Haggie, P. M., & Verkman, A. S. (2002). Diffusion of tricarboxylic acid cycle enzymes in the mitochondrial matrix in vivo: evidence for restricted mobility of a multienzyme complex. Journal of Biological Chemistry, 277(43), 40782-40788.
    Zekonyte, U., Bacman, S. R., Smith, J., Shoop, W., Pereira, C. V., Tomberlin, G., Stewart, J., Jantz, D., & Moraes, C. T. (2021). Mitochondrial targeted meganuclease as a platform to eliminate mutant mtDNA in vivo. Nature Communications, 12(1), 3210.
    Wei, Y.-H., & Lee, H.-C. (2002). Oxidative stress, mitochondrial DNA mutation, and impairment of antioxidant enzymes in aging. Experimental Biology and Medicine, 227(9), 671-682.
    Kujoth, G. C., Hiona, A., Pugh, T. D., Someya, S., Panzer, K., Wohlgemuth, S. E., Hofer, T., Seo, A. Y., Sullivan, R., Jobling, W. A., Morrow, J. D., Van Remmen, H., Sedivy, J. M., Yamasoba, T., Tanokura, M., Weindruch, R., Leeuwenburgh, C., & Prolla, T. A. (2005). Mitochondrial DNA mutations, oxidative stress, and apoptosis in mammalian aging. Science, 309(5733), 481-484.
    Rong, Z., Tu, P., Xu, P., Sun, Y., Yu, F., Tu, N., Guo, L., & Yang, Y. (2021). The mitochondrial response to DNA damage. Frontiers in Cell and Developmental Biology, 9.
    Li, H., Slone, J., Fei, L., & Huang, T. (2019). Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells, 8(6), 608.
    Heilig, R., Lee, J., & Tait, S. W. G. (2023). Mitochondrial DNA in cell death and inflammation. Biochemical Society Transactions, 51(1), 457-472.
    Vringer, E., & Tait, S. W. G. (2023). Mitochondria and cell death-associated inflammation. Cell Death & Differentiation, 30(2), 304-312.
    Juliani, M. H., Gambarini, A. G., & Costa, S. O. P. (1975). Induction of ϱ− mutants in Saccharomyces cerevisiae by guanidine hydrochloride: I. Genetic analysis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 29(1), 67-75.
    Grégoire, M., Morais, R., Quilliam, M. A., & Gravel, D. (1984). On auxotrophy for pyrimidines of respiration-deficient chick embryo cells. European Journal of Biochemistry, 142(1), 49-55.
    Hashiguchi, K., & Zhang-Akiyama, Q. M. (2009). Establishment of human cell lines lacking mitochondrial DNA. Methods Mol Biol, 554, 383-391.
    Kukat, A., Kukat, C., Brocher, J., Schäfer, I., Krohne, G., Trounce, I. A., Villani, G., & Seibel, P. (2008). Generation of rho0 cells utilizing a mitochondrially targeted restriction endonuclease and comparative analyses. Nucleic Acids Res, 36(7), e44.
    Armand, R., Channon, J. Y., Kintner, J., White, K. A., Miselis, K. A., Perez, R. P., & Lewis, L. D. (2004). The effects of ethidium bromide induced loss of mitochondrial DNA on mitochondrial phenotype and ultrastructure in a human leukemia T-cell line (MOLT-4 cells). Toxicol Appl Pharmacol, 196(1), 68-79.
    King, M. P., & Attardi, G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science, 246(4929), 500-503.
    Morais, R., Gregoire, M., Jeannotte, L., & Gravel, D. (1980). Chick embryo cells rendered respiration-deficient by chloramphenicol and ethidium bromide are auxotrophic for pyrimidines. Biochemical and Biophysical Research Communications, 94(1), 71-77.
    Lund, K. C., Peterson, L. L., & Wallace, K. B. (2007). Absence of a universal mechanism of mitochondrial toxicity by nucleoside analogs. Antimicrobial Agents and Chemotherapy, 51(7), 2531-2539.
    Luria, S. E., & Human, M. L. (1952). A nonhereditary, host-induced variation of bacterial viruses. Journal of Bacteriology, 64(4), 557-569.
    F, D. I. F., Micheli, G., & Camilloni, G. (2019). Restriction enzymes and their use in molecular biology: An overview. J Biosci, 44(2).
    Williams, R. J. (2003). Restriction endonuclease. Molecular Biotechnology, 23(3), 225-243.
    Brown, W. M., & Vinograd, J. (1974). Restriction endonuclease cleavage maps of animal mitochondrial DNAs. Proceedings of the National Academy of Sciences, 71(11), 4617-4621.
    Brown, W. M. (1980). Polymorphism in mitochondrial DNA of humans as revealed by restriction endonuclease analysis. Proc Natl Acad Sci U S A, 77(6), 3605-3609.
    Wang, X., Le, N., Denoth-Lippuner, A., Barral, Y., & Kroschewski, R. (2016). Asymmetric partitioning of transfected DNA during mammalian cell division. Proceedings of the National Academy of Sciences, 113(26), 7177-7182.
    Brito Querido, J., Díaz-López, I., & Ramakrishnan, V. (2024). The molecular basis of translation initiation and its regulation in eukaryotes. Nature Reviews Molecular Cell Biology, 25(3), 168-186.
    Hellen, C. U. T. (2018). Translation termination and ribosome recycling in eukaryotes. Cold Spring Harb Perspect Biol, 10(10).
    Wu, Q., & Bazzini, A. A. (2023). Translation and mRNA stability control. Annu Rev Biochem, 92, 227-245.
    Zou, S., Scarfo, K., Nantz, M. H., & Hecker, J. G. (2010). Lipid-mediated delivery of RNA is more efficient than delivery of DNA in non-dividing cells. International Journal of Pharmaceutics, 389(1), 232-243.
    Sahin, U., Karikó, K., & Türeci, Ö. (2014). mRNA-based therapeutics — developing a new class of drugs. Nature Reviews Drug Discovery, 13(10), 759-780.
    Hajj, K. A., & Whitehead, K. A. (2017). Tools for translation: non-viral materials for therapeutic mRNA delivery. Nature Reviews Materials, 2(10), 17056.
    Ashley, N., Harris, D., & Poulton, J. (2005). Detection of mitochondrial DNA depletion in living human cells using PicoGreen staining. Experimental Cell Research, 303(2), 432-446.
    Sasaki, T., Sato, Y., Higashiyama, T., & Sasaki, N. (2017). Live imaging reveals the dynamics and regulation of mitochondrial nucleoids during the cell cycle in Fucci2-HeLa cells. Scientific Reports, 7(1), 11257.
    De Wit, F., Pillalamarri, S. R., Sebastián-Martín, A., Venkatesham, A., Van Aerschot, A., & Debyser, Z. (2019). Design of reverse transcriptase–specific nucleosides to visualize early steps of HIV-1 replication by click labeling. Journal of Biological Chemistry, 294(31), 11863-11875.
    Gallie, D. R. (1991). The cap and poly(A) tail function synergistically to regulate mRNA translational efficiency. Genes Dev, 5(11), 2108-2116.
    Rizzuto, R., Nakase, H., Darras, B., Francke, U., Fabrizi, G. M., Mengel, T., Walsh, F., Kadenbach, B., DiMauro, S., & Schon, E. A. (1989). A gene specifying subunit VIII of human cytochrome c oxidase is localized to chromosome 11 and is expressed in both muscle and non-muscle tissues. Journal of Biological Chemistry, 264(18), 10595-10600.
    Candas, D., Qin, L., Fan, M., & Li, J. J. (2016). Experimental approaches to study mitochondrial localization and function of a nuclear cell cycle kinase, Cdk1. J Vis Exp(108), 53417.
    Hoogewijs, K., James, A. M., Smith, R. A., Gait, M. J., Murphy, M. P., & Lightowlers, R. N. (2016). Assessing the delivery of molecules to the mitochondrial matrix using click chemistry. Chembiochem, 17(14), 1312-1316.
    Robberson, D. L., Clayton, D. A., & Morrow, J. F. (1974). Cleavage of replicating forms of mitochondrial DNA by EcoRI endonuclease. Proceedings of the National Academy of Sciences, 71(11), 4447-4451.
    Buzzo, K., Fouts, D. L., & Wolstenholme, D. R. (1978). EcoRI cleavage site variants of mitochondrial DNA molecules from rats. Proceedings of the National Academy of Sciences, 75(2), 909-913.

    無法下載圖示 校內:2029-07-31公開
    校外:2029-07-31公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE