簡易檢索 / 詳目顯示

研究生: 徐子軒
Hsu, Tzu-Hsuan
論文名稱: 質子交換膜燃料電池流道之壓降分析與幾何優化設計
Pressure Drop Analysis and Geometry Optimization of Flow Channels in Proton Exchange Membrane Fuel Cells
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 111
中文關鍵詞: 質子交換膜燃料電池流道設計流阻電路類比法ANSYS Fluent
外文關鍵詞: PEMFC, Flow channel design, Flow resistance, Circuit Analogy, ANSYS Fluent
相關次數: 點閱:120下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 開發潔淨的替代能源已是全世界的發展趨勢,而本實驗室目前也與工研院共同發展燃料電池相關的應用技術,希望未來能夠應用於燃料電池車。工研院在燃料電池的研究上,主要著重於燃料電池內的流道設計及流道板製程,其主要目的在於透過不同的流道製程,降低流道板的製作成本,並利用不同的流道設計,提升工作氣體流率,進而增進燃料電池整體的使用效率。
    本論文的研究目標是開發低流阻的流道設計。在作法上,我們主要以ANSYS Fluent軟體來模擬流道流場。同時,我們也利用電路類比法發展了一套快速且較不複雜的流量估算方式;此外,我們也根據低流阻的目標,設計多款不同於傳統蛇行構造且具有低流阻的新流道:分別有支流類型、環繞式蛇行類型、左右對稱類型及波浪類型的流道。
    我們也透過實驗的方式進行流道流量的驗證及發電效能的檢測。於實驗與模擬的流量結果比較中,傳統蛇行流道在進出口壓損7000 Pa ~ 2000 Pa下,模擬結果的最大誤差約為10%。在發電實驗中,我們只檢驗支流類型及環繞式蛇行類型的流道,結果顯示對稱支流型流道有最佳的性能表現。因此我們預期對稱支流型流道將是所有測試流道中,在串聯40顆電池的情況下,最能同時維持陰極端高當量比及高發電功率的流道。
    最後我們則將以上的設計經驗,應用至大面積流道板的陰極端之流道設計中,此大面積流道板的反應面積約有600 ,而本論文是以多進多出及模組化的方式來設計流道,計算分析結果顯示,當使用六進六出搭配波浪流道時,可以在壓損5000 Pa下,供給約104 slm的空氣流量。此一結果滿足工研院預設之規格需求,因此可望在未來實際應用在工研院開發之燃料電池系統上。

    In collaboration with the Industrial Technology Research Institute (ITRI), we are devoted to developing fuel cell technology, which can be utilized on board of automobiles, and hopefully will become increasingly more important in the future. In particular, in this thesis we shall focus on the flow channels, and propose several novel flow channel designs with low flow resistance, so as to help reduce the cost of manufacturing and system operation. Technically, here we simulate the flow field of such flow channel designs by use of the commercial software ANSYS Fluent. Moreover, we also construct a fast and rather accurate tool, namely the method of “circuit analogy”, to estimate the volumetric flow rate in such flow channels. The novel flow channels studied in this thesis include the “branch type”, “turn-around serpentine type”, “symmetry type” and “wavy type” flow channels. It is found that these flow channels can all produce higher volumetric flow rate than the traditional serpentine flow channel does. In addition, based on the results obtained from the above-mentioned flow channels, a large-area flow channel pattern, having an area of about , also is proposed. Specifically, in that design, we deploy multiple inlets and multiple outlets, and divide the large-area flow channel into several modules, each of which can accommodate a different subpattern. And the subpatterns can be properly combined to produce an “optimized” overall flow resistance. For example, when we use a six-inlet-six-outlet wavy channel design, it can produce a volumetric flow rate of 104 slm at a pressure drop of 5000 Pa, which is an outstanding performance compared with other existing designs.

    中英文摘要 I 致謝 XI 目錄 XIII 圖目錄 XVII 表目錄 XXI 符號說明 XXIII 1. 緒論 1 1.1 研究背景 1 1.2 研究動機與目的 5 1.3 文獻回顧-流道設計 8 1.4 本文架構 18 2. 理論背景介紹 19 2.1 PEMFC的運作原理 19 2.2 文獻回顧-管內流壓力損失 23 2.3 流場內流阻公式推導 25 2.4 多孔介質之數學模型 29 3. 研究方法 33 3.1 數值計算模型/純流量模擬 34 3.2 電路類比法 41 3.3 實驗方法 43 3.4 G8A模擬與實驗結果比較 48 3.5 小結 49 4. 新流道設計說明 51 4.1 流道設計幾何限制 51 4.2 設計目標與設計流程 53 4.3 設計方向與新流道種類 55 4.4 支流型流道/G8C、G8H、G8D2 59 4.5 環繞式蛇行流道/G8K、G8L 65 4.6 其它流道設計/G16S、G40W 71 4.7 小結 75 5. 發電實驗測試 79 5.1 實驗過程說明 79 5.2 實驗結果 80 5.3 小結 85 6. 大面積流道板初步設計 87 6.1 板型幾何配置 87 6.2 出入口設計-多進多出 89 6.3 各流道板型的流量估算 91 7. 結論與未來工作 99 7.1 結論 99 7.2 本文主要貢獻 101 7.3 未來工作 101 參考文獻 103 附錄A - 實驗設備詳細規格 107 附錄B - 流道總表 111

    黃鎮江,「燃料電池」,全華科技圖書股份有限公司,2005年。
    李鈞函,「燃料電池原理及組件」,工業技術研究院-積層製造與雷射中心,2013年。
    A. P. Manso, F. F. Marzo, J. Barranco, X. Garikano, M. Garmendia “Influence of geometric parameters of the flow fields on the performance of a Pem fuel cll. A review” International Journal of Hydrogen Energy, vol. 37, pp. 15256-15287, 2012.
    S. S. Hsieh, S. H. Yang, J. K. Kuo, C. F. Huang, H. H. Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields.” Energy Conversion and Management, vol. 47, pp. 1868-1878, 2006.
    J. Scholta, G. Escher, W. Zhang, L. Ku ̈ppers, L. Jo ̈rissen, W. Lehnert, “Investigation on the influence of channel geometries on PEMFC performance.” Journal of Power Sources, vol. 155, pp. 66-71, 2006.
    S. G. Kandlikar, Z. Lu, W. E. Domigan, A. D. White, M. W. Benedict, “Measurement of flow maldistribution in parallel channels and its application to ex-situ and in-situ experiment in PEMFC water management studies.” International Journal of Heat and Mass Transfer, vol. 52, pp. 1741-1752, 2009.
    D. H. Jeon, S. Greenway, S. Shimpalee, J. W. Van Zee, “The effect of serpentine flow-field designs on PEM fuel cell performance.” International Journal of Hydrogen Energy, vol. 33, pp. 1052-1066, 2008.
    H. Li, Y. Tang, Z. Wang, Z. Shi, S. Wu, D. Song, J. Zhang, K. Fatih, J. Zhang, H. Wang, Z. Liu, R. Abouatallah, A. Mazza, “A review of water flooding issues in the proton exchange membrane fuel cell” Journal of Power Sources, vol. 178, pp. 103-117, 2008.
    J. Y. Jang, C. H. Cheng, W. H. Cheng, W. T. Liao, Y. X. Huang, Y. C. Tsai, “Experimental and numerical study of proton exchange membrane fuel cell with spiral flow channels.” Applied Energy, vol. 99, pp. 67-79, 2012.
    I. Khazaee, “Improvement the performance of a proton exchange membrane fuel cell by changing the channel geometry.” International Journal of Energy and Envirnment, vol. 5, pp. 375-386, 2014.
    K. Suga, W. Nishimura, T. Yamamoto, M. Kaneda, “Measurements of serpentine channel flow characteristics for a proton exchange membrane fuel cell.” International Journal of Hydrogen Energy, vol. 39, pp. 5942-5954, 2014.
    S. Maharudrayya, S. Jayanti, A. P. Deshpande, “Pressure drop and flow distribution in multiple parallel-channel configurations used in proton-exchange membrane fuel cell stacks.” Journal of Power Sources, vol. 157, pp. 358-367, 2006.
    J. K. Kuo, T. S. Yen, C. K. Chen, “Improvement of performance of gas flow channel in PEM fuel cells.” Energy Conversion and Management, vol. 49, pp. 2776-2787, 2008.
    S. M. Baek, D. H. Jeon, J. H. Nam, C. J. Kim, “Pressure drop and flow distribuon characteristics of single and parallel serpentine flow fields for polymer electrolyte membrane fuel cells.” Journal of Mechanical Science and Technology, vol. 26, pp. 2995-3006, 2012.
    J. Park, X. Li, “An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel.” Journal of Power Sources, vol. 163, pp. 853-863, 2007.
    C. Xu, T. S. Zhao, “A new flow field design for polymer electrolyte-based fuel cells.” Electrochemistry Communication, vol. 9, pp. 497-503, 2007.
    V. N. Duy, K. Kim, J. Lee, J. Ahn, S. Park, T. Kim, H. M. Kim, “Parametric Simulations of Optimum Flow-field Configuration for Efficient Proton Exchange Membrane Fuel Cell.” International Journal of ElECTROCHEMICAL SCIENCE, vol. 10, pp. 5842-5861, 2015.
    C. F. Colebrook, “Turbulent Flow in Pipes,with particular reference to the Transition Region between the Smooth and Rough Pipe Law.” Journal of the ICE, vol. 1, pp. 133-156, 1939.
    P. Li, J. E. Seem, Y. Li, “A new explicit equation for accurate friction factor calculation of smooth pipes.” vol. 34, pp. 1535-1541, 2011.
    O. C. Jones JR, ”An Improventment in the Calculation of Turbulent Friction in Rectangular Ducts.” Journal of Fluids Engineering, vol. 98, pp.173-180, 1976.
    B. R. Munson, D. F. Young, T. H. Okiishi, W. W. Huebsch, ”Fundamentals of Fluid Mechanics” John Wiley & Sons (Asia) Pte Ltd, Sixth Edition, International Student Version, 2010.
    A. Bhunua, C. L. Chen, “Flow Characteristics in a Curved Rectangular Channel With Variable Cross-Sectional Area” Journal of Fluids Engineering, vol. 131, 2009.
    G. Mompean, T. C. Zambrano, Z. Salloum, “Development of secondary flows in viscoelastic curved ducts and the influence of outlet region” Comptes Rendus Meciquean, vol. 342, pp.478-484, 2014.
    H. A. Mohammed, P. Gunnasegaran, N. H. Shuaib, “Numeriacl simulation of heat transfer enhancement in wavy microchannel heat sink” International Communications in Heat and Mass Transfer, vol. 50, pp. 2473-2492, 2011.
    Y. Sui, P. S. Lee, C. J. Teo, “An experimental study of friction and heat transfer in wavy microchannels with rectangular cross section” Internal Journal of Thermal Science, vol. 50, pp.2473-2482, 2011.
    Y. Sui, C. J. Teo, P. S. Lee, “Direct numerical simulation of fluid flow and heat transfer in periodic wavy channels with rectangular cross-sections” International Journal of Heat and Mass Transfer, vol. 55, pp. 73-88, 2012.
    J. Dong, J. Chen, Z. Chen, Y. Zhou, W. Zhang, “Heat transfer and pressure drop correlations for the wavy fin and flat tube heat exchangers” Applied Thermal Engineering, vol. 27, pp. 2066-2073, 2007.
    L. S. Ismail, R. Velraj, “Studies on Fanning Friction (f) and colburn (j) factors of offset and wavy fins compact plate fin heat exchanger-a CFD approach.” Numerical Heat Transfer, Part A, vol. 56, pp. 987-1005, 2009.
    M. K. Aliabadi, F. Hormozi, E. H. Rad, “New correlations for wavy plate-fin heat exchangers: different working fluids.” International Journal of Numerical Methods for Heat & Fluid Flow, vol. 24, p.p 1086-1108, 2014.
    S. Maharudrayya, S. Jayanti, A. P. Deshpande, “Pressure losses in laminar flow through serpentine channels in fuel cell stacks.” Journal of Power Sources, vol. 138, pp. 1-13, 2004.
    R. Xiong, J. N. Chung, “Flow characteristics of water in straight and serpentine micro-channels with miter bends.” Experimental Thermal and Fluid Science, vol. 31, pp. 805-812, 2007.
    R. Xiong, J. N. Chung, “Effects of miter bend on pressure drop and flow structure in micro-fluidic channels.” Internationals Journal of Heat and Mass Transfer, vol. 51, pp. 2914-2924, 2008.
    S. Kakac, R. K. Shah, W. Aung, “Handbook of Single-Phase Convective Heat Transfer”, John Wiley and Sons, New York, 1987.
    R. K. Shah, “A correlation for Laminar Hydrodynamic Entry Length Soluition for Circular and Noncircular Ducts.” Journal of Fluids Engineering, vol. 100, pp. 177-179, 1978.
    ANSYS Fluent 12 User’s Guide – 7.2.3 Porous media conditions. Internet address:http://www.afs.enea.it/project/neptunius/docs/fluent/html/ug/node233.htm.
    S. Ergun, “Fluid Flow Through Packed Columns.” Chemical Engineering Progress, vol. 48, p.p 89-94.
    Ansys Fluent Theory Guide, ANSYS, Inc., 2011.

    下載圖示 校內:2021-09-01公開
    校外:2021-09-01公開
    QR CODE