簡易檢索 / 詳目顯示

研究生: 甘玉鳳
Gan, Yu-Feng
論文名稱: H型鋼及熱風爐之熱固耦合及最佳化研究
Thermal-Mechanical and Optimization Study for a H-beam and a Hot Blast Stove
指導教授: 張錦裕
Jang, Jiin-Yuh
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 181
中文關鍵詞: 熱風爐H 型鋼熱固耦合殘餘應力熱應力
外文關鍵詞: Hot blast stove, H-shape steel beams, thermomechanical, residual stress, thermal-stress
相關次數: 點閱:108下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究分為兩個部分,第一部分主要對H型鋼熱軋過程中之快速冷卻進行研究。H型鋼作為綠色建築的新型鋼材具有結構強度高、自重輕、工程施工快且佔地面積小等優點,但其熱軋製程極其複雜,為了增強H型鋼的機械材料性能,需對其軋後冷卻過程進行嚴格控制。本部分以數值模擬對H型鋼之快速冷卻進行最佳化分析並輔以雙噴嘴射流衝擊冷卻實驗對高溫鋼板表面之h值進行逆向求解;第二部分主要對煉鋼廠熱風爐之運作方式及其熱應力進行分析,熱風爐之功能乃供給高爐高溫熱風,是影響煉鐵產量的重要設備之一。本部分研究主要對熱風爐運作期間之熱流場進行數值模擬並與現場溫度量測值進行比對,並結合溫度場對熱風爐之熱應力進行分析。各部分之研究內容如下:
    H型鋼之快速冷卻部分乃利用共軛梯度法結合三維熱力耦合模型對H型鋼均勻快速冷卻之熱傳係數進行最佳化分析,同時輔以雙噴嘴射流衝擊冷卻實驗對高溫鋼板快速冷卻之h 值分佈進行逆向求解,用以掌握H型鋼在軋後冷卻過程中多噴嘴衝擊冷卻時,由噴嘴間距、噴嘴流量、噴嘴高度及干涉效應等因素對其冷卻效果之影響。對於H型鋼均勻快速冷卻之熱傳係數最佳化分析部分,主要探討三種不同尺寸之H型鋼 ( H300×300, H250×250, 和H200×200) 在控制冷卻過程中之溫度分佈和殘餘應力分佈,研究發現在同樣的計算條件下 (初始溫度為850℃,冷卻後的平均溫度為550±10℃),採用共軛梯度方法計算之最佳熱傳係數分佈可以產生更均勻之溫度分佈和更小之殘餘應力,不同尺寸之H型鋼最大溫差分別降低57℃,74℃和75℃,表面最大溫度差減少60〜80℃,腹板殘餘應力可以減少20〜40 MPa。對於雙噴嘴射流衝擊冷卻實驗部分,根據實驗試件建立三維數值模型,並使用共軛梯度法之逆向求解方法來計算鋼板冷卻過程中表面之傳熱係數分佈。實驗和數值結果均表明在兩個噴嘴噴射衝擊區域之間會出現干涉區域(會產生干涉效應),且干涉間距隨噴嘴流量和噴嘴高度以及噴嘴間距的變化而變化。隨著水流在鋼板表面上擴散,散熱區域逐漸從衝擊區域延伸到干涉區域和流動區域,在水流濕前沿到達處熱通量達到峰值,同時,熱通量之峰值隨著與衝擊區域之距離增加而減小。逆向計算結果顯示最大局部傳熱係數約為23000 W/(m2-K),而平均傳熱係數在一定範圍內隨著水流速的增加而增加,但隨著噴嘴間距的增加而減小。鋼板表面之熱傳係數在衝擊區域最大,干涉區域次之,流動區域最小,干涉區域產生之干涉效應會明顯增加熱傳效果,即干涉效應的產生會增加鋼板表面之熱傳係數。
    熱風爐之操作過程在一個週期內可分為燃燒期和送風期。本研究以中鋼34# KK type熱風爐之實際模型建立熱風爐之三維物理模型,蓄熱磚部分採用非平衡多孔性介質(non-equilibrium porous medium)模型進行簡化,且熱流場計算中壁磚進行等效簡化,並將模擬之溫度值與中鋼實測數據比對,結果發現Point A(拱頂),Point B(flue outlet)和Point C(hot blast outlet)最大誤差值分別為2.5%,6.4%和6.2%,均在7%以內。從模擬結果可以看出,在燃燒期和送風期流體流速隨著流道截面積和溫度的變化,其範圍分別為6 m/s~24 m/s、0.9 m/s~8 m/s。在燃燒期內,蓄熱室內流體溫度高於蓄熱磚溫度,而在送風期內,蓄熱磚溫度高於流體溫度,且在整個週期內,蓄熱室內蓄熱磚和流體之溫度均隨高度之增加而增加,蓄熱磚與流體之溫差約為10℃~35℃,熱風爐不同位置壁磚內外表面之溫差範圍為207~1100℃,拉應力(第一主軸應力)主要集中於壁磚外壁面,除了頸部外應力均在20 MPa以內,壓應力(第三主軸應力)主要集中於壁磚內壁面,除了底部外應力均在-25 MPa以內。其形變量整體表現為向上向外膨脹,最大形變量發生在燃燒室內部頂端處約為200 mm,燃燒室/蓄熱室拱頂及連接管處形變量僅與鐵殼形變量有關而與爐身之形變量之間相互獨立。熱風爐鐵殼整體形變量表現為向上向外自由膨脹,形變量最大發生在燃燒室拱頂頂部,其最大形變量約為30 mm。鐵殼主要承受拉應力,且應力主要集中於頸部、燃燒室/蓄熱室拱頂和連接管以及熱風支管與爐身交接處,壓應力主要集中於各部位連接處。

    This study is divided into two parts. The first part is investigated to obtain the design requirements for maximum uniform temperature distributions and minimal residual stress after controlled cooling for the H-shape steel beams. At the meantime, in order to obtain the heat transfer coefficient distributions, a experimental of dual spray water nozzle impingement cooling are used to investigate the cooling character of the flat plate using for the spray impingement cooling process.The second part is used to calculate the temperature and stress distribution during the operating process by building a 3D thermal and thermomechanical model of a hot blast stove. The results are described as follows:
    Three-dimensional thermal-mechanical models for the prediction of heat transfer coefficient distributions with different size beams are investigated. H300×300, H250×250, and H200×200 H-shape steel beams are investigated in a controlled cooling process to obtain the design requirements for maximum uniform temperature distributions and minimal residual stress after controlled cooling. An algorithm developed with the conjugated-gradient method is used to optimize the heat transfer coefficient distribution. In a comparison with the three group results, the numerical results indicate that, with the same model and under the same initial temperature (T_in = 850℃) and final temperature (T_ave= 550±10℃), the heat transfer coefficients obtained with the conjugated gradient method can produce more uniform temperature distribution and smaller residual web stress, with objective functions of the final average temperature (T_ave±ΔT) and maximum temperature difference to minimum min{ΔTmax (x, y)}. The maximum temperature difference is decreased by 57℃, 74℃, and 75℃ for Case 1, Case 2, and Case 3, respectively, the surface maximum temperature difference is decreased by 60 ~ 80℃ for three cases, and the residual stress at the web can be reduced by 20 ~ 40 MPa for three cases. For the experimental part, dual nozzles are used to investigate the cooling character of the flat plate using for the spray impingement cooling process. Based on an experimental temperature measurement, a three-dimensional numerical model is set up to calculate the transient heat transfer coefficient of the cooling plate by solving the inverse heat conduction problem with the conjugate gradient method. Both the experimental and numerical results indicated that an interference region appeared between the two jet spray impingement regions. The interference pitch varied with the flow rates, the height from the plane to the jet outlet, and the distance between the two jets. As water spread over the plate, the heat dissipation region gradually stretched from the impingement region to the interference and flow regions. A peak in the heat flux curve was observed when the water arrived at the wet front of the flow. Meanwhile, the peak in the heat flux decreased as the distance from the impingement region increased. A maximum local heat transfer coefficient 23000 W/(m2K) was observed in this experiment. The global average heat transfer coefficient increased with increases in the water flow rate, but it decreased with increases in the pitch.
    Hot blast stoves are important equipment used in the iron-making process, the structure of which is composed of five parts: (1) checker chamber, (2) combustion chamber, (3) checker dome, (4) combustion dome, and (5) cross-over. The cyclic operating process consists of an on-gas period and an on-blast period. In this study, a 3D thermal and thermomechanical model of a hot blast stove were used to calculate the temperature and stress distribution during the operating process.The thermal analysis simulation results are compared with the in-situ data, and the maximum error was found to be lower than 7%. The results indicated that the flue gas or the cold/hot blast temperature is higher than that in the checker in the checker chamber during the on-gas period but lower than that in the checker during the on-blast period, and the range of the temperature difference is 10~35℃. The maximum principal stress mainly occurred outside of the refractory linings, and the minimum principal stress mainly occurred inside of the refractory linings. The maximum strain occurred inside of the refractory linings in the combustion chamber. The shell is mainly subjected to the maximum principal stress, where the minimum principal stress only occurred at the junction. The maximum strain of the shell occurred at the top of the combustion dome.

    目  錄 摘  要 I Abstract IV 致 謝 XXII 目  錄 XXIV 表 目 錄 XXVI 圖 目 錄 XXVII 符號說明 XXXII 第一章 緒論 1 1.1前言 1 1.1-1 H型鋼之應用及其控制冷卻 1 1.1-2 熱風爐之運作方式及其簡介 2 1.2文獻回顧 4 1.2-1 H型鋼之熱傳與殘餘應力研究 4 1.2-2 熱風爐之熱傳與熱應力研究 9 1.3研究動機與目的 11 1.3-1 H型鋼之熱傳與殘餘應力研究 11 1.3-2 熱風爐之熱傳與熱應力研究 12 第二章 H型鋼之熱傳與殘餘應力研究 17 2.1 研究方法及研究步驟 17 2.1-1 H型鋼熱傳及殘餘應力之最佳化分析 17 2.1-2 高溫鋼板雙噴嘴射流衝擊冷卻試驗 21 2.2 數值方法 29 2.2-1 數值方法 29 2.2-2 共軛梯度法之理論模式 30 2.3 實驗設備與方法 44 2.3-1 實驗設備 44 2.3-2 噴嘴參數 44 2.3-3 試件 45 2.3-4 實驗步驟 45 2.3-5 實驗的不確定性分析 46 2.4 結果與討論 54 2.4-1 H型鋼之熱傳與殘餘應力最佳化分析 54 2.4-2 高溫鋼板雙噴嘴射流衝擊冷卻之熱傳係數分析 70 第三章 熱風爐之熱傳與熱應力研究 91 3.1研究方法及研究步驟 91 3.1-1 物理模型 91 3.1-2 統御方程式 93 3.1-3 煙氣、隔熱磚、蓄熱磚及鐵殼之熱物理及機械性質 99 3.1-4 初始條件與邊界條件 102 3.1-5 熱傳係數之計算 104 3.1-6 多孔磚與非平衡多孔性介質之壓降與熱傳比對分析 105 3.2 數值方法 130 3.3 結果與討論 134 第四章 結論 164 4.1 H型鋼之熱傳與殘餘應力研究 165 4.2 熱風爐之熱傳與熱應力研究 167 參考文獻 171 附錄 A 共軛梯度法之程式語言 177 附錄 B 熱風爐之初始條件副程式UDF (User-Define Function) 180   表 目 錄 表2-1 Case 1對應熱傳係數之最佳化分佈h1- h5 (以十步為例) 66 表2-2 Case 2對應熱傳係數之最佳化分佈h1- h5 (以十步為例) 67 表2-3 Case 3對應熱傳係數之最佳化分佈h1- h5 (以十步為例) 68 表2-4 3個cases之結果比較 69 表3-1 煙氣各成份之比熱 126 表3-2 煙氣各成份之熱傳導係數 126 表3-3 煙氣各成份之粘滯係數 127 表3-4 隔熱磚密度及熱傳導係數 128 表3-5 隔熱磚比熱 128 表3-6 蓄熱磚密度及熱傳導係數 129 表3-7 蓄熱磚比熱 129   圖 目 錄 圖1-1 鋼鐵生產流程 13 圖1-2 H型鋼(wide-flange)示意圖 14 圖1-3 熱風爐運作機制 15 圖1-4 熱風爐系統運作模式(中鋼公司提供) 16 圖2-1 H型鋼物理模型 23 圖2-2 H型鋼格點圖 24 圖2-3 H型鋼熱傳係數之分佈 25 圖2-4 H型鋼 Cp, k, a與溫度變化之關係圖 26 圖2-5 H型鋼E, sY,Phases Vol與溫度變化之關係圖 27 圖2-6 鋼板之物理模型、格點及鋼板表面h 值分佈 28 圖2 7 最佳化介面架構示意圖 39 圖2-8 正定二次函數之等高線圖 40 圖2-9 正定二次函數經座標轉換後之共軛示意圖 40 圖2-10 正定二次函數轉回原座標系之共軛示意圖 40 圖2-11 共軛梯度法之搜尋路徑 41 圖2-12 共軛梯度法之計算流程圖 42 圖2-13 實驗系統構造圖 50 圖2-15 實驗配件 52 圖2-16 熱電偶(量測點)分佈及衝擊區域示意圖 53 圖2-17 case1 不同初始值之搜尋路徑 58 圖2-18 case2 不同初始值之搜尋路徑 59 圖2-19 case3 不同初始值之搜尋路徑 60 圖2-20 case 1不同位置之溫度和溫差隨時間變化曲線 61 圖2-21 case 2不同位置之溫度和溫差隨時間變化曲線 62 圖2-22 case 3不同位置之溫度和溫差隨時間變化曲線 63 圖2-23 15 s時H型鋼不同熱傳係數分佈對應之溫度場分佈 64 圖2-24 腹板對應之殘餘應力分佈 65 圖2-25 不同噴嘴流量之流場觀測 (H = 200 mm, P = 150 mm) 74 圖2-26 不同噴嘴間距之流場觀測 (H = 200 mm, Q = 2.5 L/min) 75 圖2-27 不同噴嘴間距之流場觀測 (H = 200 mm, Q = 4.0 L/min) 76 圖2-28 不同噴嘴間距之流場觀測 (H = 200 mm, Q = 5.2 L/min) 77 圖2-29 干涉間距與噴嘴流量和噴嘴高度之關係曲線圖 78 圖2-30 不同噴嘴流量下之冷卻曲線 (Pitch = 100 mm) 79 圖2-31 不同噴嘴流量下之冷卻曲線 (Pitch = 150 mm) 80 圖2-32 不同噴嘴流量下之冷卻曲線 (Pitch = 200 mm) 81 圖2-33 t=1 s時不同噴嘴流量下之熱傳係數分佈 (Pitch = 150 mm). 82 圖2-34 t=5 s時不同噴嘴流量下之熱傳係數分佈 (Pitch=150 mm) 83 圖2-35 t=10 s時不同噴嘴流量下之熱傳係數分佈 (Pitch=150 mm) 84 圖2-36 t=15 s時不同噴嘴流量下之熱傳係數分佈 (Pitch=150 mm) 85 圖2-37 t=20 s時不同噴嘴流量下之熱傳係數分佈 (Pitch=150 mm) 86 圖2-38 不同區域之溫度和熱傳係數隨時間之變化圖 87 圖2-39 不同區域之熱通量隨時間之變化圖 88 圖2-40 不同流量下熱傳係數隨時間之變化圖 (Pitch = 150 mm) 89 圖2-41 不同間距下熱傳係數隨時間之變化圖 (Q = 5.2 L/min) 90 圖3-1 三維模型之熱風爐組成與二維斷面圖 106 圖3-2 三維模型之熱風爐流體區 107 圖3-3 三維模型之熱風爐隔熱磚 108 圖3-4 熱風爐隔熱磚之多層分佈 (由內至外) 109 圖3-5 隔熱磚及填充材料的局部構造 110 圖3-6 拱頂、連接管之偏心與不對稱設計 111 圖3-7 鐵殼的簡化處理 112 圖3-8 部分蓄熱磚、隔熱磚及保溫棉之樣品圖 (中鋼公司提供) 113 圖3-9 空氣密度和熱傳導係數與溫度變化之關係圖 114 圖3-10 空氣比熱和粘滯係數與溫度變化之關係圖 115 圖3-11 煙氣之進口邊界條件 (中鋼公司提供) 116 圖3-12 冷鼓風之進口邊界條件 (中鋼公司提供) 117 圖3-13 蓄熱磚之物理模型及其單孔對稱模型 118 圖3-14 多孔磚單孔對稱模型 119 圖3-15 多孔磚之單位壓降隨速度變化曲線 120 圖3-16 porous與多孔磚之單位壓降比對 120 圖3-17 h值隨速度變化曲線 121 圖3-18 燃燒期porous與多孔磚之溫度分佈比對 122 圖3-19 燃燒期porous與多孔磚之溫度分佈比對曲線圖 123 圖3-20 送風期porous與多孔磚之溫度分佈比對 124 圖3-21 送風期porous與多孔磚之溫度分佈比對曲線圖 125 圖3-22 熱風爐熱固耦合計算流程示意圖 131 圖3-23 熱液動分析格點示意圖 132 圖3-24 熱應力分析格點示意圖 133 圖3-25 佈點設置 141 圖3-26 初始溫度(600K)至準穩態之溫度場分析 142 圖3-27 模擬與現場數據比對 143 圖3-28 燃燒期 (t = 100min) 速度場與分度場分析 144 圖3-29 送風期 (t = 214min) 速度場與分度場分析 145 圖3-30 蓄熱磚區域流體與固體溫度分佈 146 圖3-31 蓄熱室壁磚溫度隨位置變化 147 圖3-32 燃燒室壁磚溫度隨位置變化 147 圖3-33 蓄熱室拱頂壁磚溫度隨位置變化 148 圖3-34 連接管壁溫度隨位置變化 148 圖3-35 燃燒室拱頂壁溫度隨位置變化 149 圖3-36 鐵殼溫度場分佈 ( t=100min) 149 圖3-37 蓄熱室隔熱磚溫差 150 圖3-38 蓄熱室隔熱磚第一主軸應力 150 圖3-39 蓄熱室隔熱磚第三主軸應力 151 圖3-40 燃燒室隔熱磚溫差 151 圖3-41 燃燒室隔熱磚第一主軸應力 152 圖3-42 燃燒室隔熱磚第三主軸應力 152 圖3-43 蓄熱室拱頂隔熱磚溫度/溫差 153 圖3-44 蓄熱室拱頂隔熱磚第一/三主軸應力 153 圖3-45 連接管隔熱磚溫差 154 圖3-46 連接管隔熱磚第一/三主軸應力 154 圖3-47 燃燒室拱頂隔熱磚溫度/溫差 155 圖3-48 燃燒室拱頂隔熱磚第一/三主軸應力 155 圖3-49 熱風爐隔熱磚形變量分佈 (t=100min) 156 圖3-50 熱風爐隔熱磚第一主軸應力分佈 (t=100min) 157 圖3-51 熱風爐拱頂、連接管及熱風支管處第一主軸應力分佈 158 圖3-52 熱風爐隔熱磚第三主軸應力分佈 (t=100min) 159 圖3-53 熱風爐拱頂、連接管及熱風支管處第三主軸應力分佈 160 圖3-54 鐵殼形變量分佈 161 圖3-55 鐵殼第一主軸應力分佈 (t=100min) 162 圖3-56 鐵殼第三主軸應力分佈 (t=100min) 163

    參考文獻
    1. 吳調原, 熱風爐體熱設計技術建立, 中鋼公司 研究專題計畫提案, 2017.
    2. Davis, W.B., “Determination of the temperature distribution in a steel slab during quenching”, Journal of the Iron and Steel Institute, Vol.6, pp.437-441, 1972.
    3. 魏士政,王昭懂,趙德文等, “中厚板控制冷卻技術”,鋼鐵研究學報, Vol.14,No.5, pp. 67-72, 2002.
    4. 李謀渭,張少軍, “邊新孝等.中厚板淬火控冷技術裝備幾項新發明”.第七屆中國鋼鐵年會, pp.124-127, 2009.
    5. 山本定弘,藤林晃夫,宇田川辰郎等,“NKK公司開發成功建築用TMCP型高韌性超厚H型鋼HIBUIL-H”, <NKK技報>, pp.11-14, 1998.
    6. Shikanai, N., Mitao, S., ENDO, S., “Recent development in microstructural control technologies through the thermo-mechanical control process (TMCP) with JFE Steel’s high-performance plates”,JFE TECHNICAL REPORT, No. 11 ,pp.1-6, 2008.
    7. Biswas, S.K., Chen, S.J., Satyanarayana,A., “Optimal temperature tracking for accelerated cooling processes in hot rolling of steel”, Dynamics Control. Vol. 7, pp.327-340, 1997.
    8. Rodrigues, P.C.M., Pereloma, E.V., Stantos, D.B., “Mechanical- properties of an HSLA bainitic steel subjected to controlled rolling with accelerated cooling”,Material science and engineering A283,pp.136-143,2000.
    9. Feng, H.J., Chen, L.G., Sun, F.R., “Numerical study on temperature field of cooling process after plate rolling based in Matlab ”,Steel Rolling ,pp.4-9,2013.
    10. Tatsumi, K., Kouki, Y., Hidemi, A. ,“Development of high strength H-shapes with excellent toughness manufactured by advanced thermo-techanical control process(TMCP), Jef Technical Report. No. 16, pp. 52-57, 2011.
    11. Takashima, Y., Yanagimoto, J., “Finite element analysis of flange spread behavior in H-beam universal rolling”, steel research int.82, No.10, pp. 1240-1247, 2011.
    12. Liu, J., Hou, F.Z., Yu, X.G., “Numerical simulation of the H-beam during cooling process”,Applied Mechanics and Materials,Vol.310, pp. 145-149, 2013.
    13. Zhu, G.M., Kang, Y.L., Guo, X.Y., “Prediction and simulation of microstructure-property and residual stress for large size hot rolled H-beam”, Materials Science Forum, Vol. 749, pp. 518-527, 2013.
    14. Yu, X.G., Hao, X., Miao, R., “Numerical Simulation analysis of H-beam steel Controlled Cooling”, Applied Mechanics and Materials, Vols. 395-396, pp. 1184-1189, 2013.
    15. Ma, J.H., Yao, X.H., Tao, B., Li, S., “Controlled residual stress research of H-Beam”, Advanced Materials Research, Vol. 898, pp.237-240, 2014.
    16. Leocadio, H., Passos, J.C., da Silva, A.F.C., “Heat transfer behavior of a high temperature steel plate cooled by a subcooled impinging circular water jet”, 7th ECI International Conference on Boiling Heat Transfer, pp.3-7, 2009.
    17. Karwa, N., Gambaryan-Roisman, T., Stephan, P., Tropea, C., “Experimental investigation of circular free-surface jet impingement quenching: Transient hydrodynamics and heat transfer”, Experimental Thermal and Fluid Science, Vol. 35, pp.1435-1443, 2011.
    18. Gradeck, M., Kouachi, A., Borean, J.L., Gardin, P., Lebouche, M., “Heat transfer from a hot moving cylinder impinged by a planar subcooled water jet”, International Journal of Heat and Mass Transfer, Vol. 54, pp.5527-5539, 2011.
    19. Wang, H. Yu, W. Cai, Q.W., “Experimental study of heat transfer coefficient on hot steel plate during water jet impingement cooling”, Journal of Materials Process Technology, Vol. 212, pp.1825-1832, 2012.
    20. Dou, R.F., Wen, Z. Zhou, G. Liu, X.L. Feng, X.H., “Experimental study on heat-transfer characteristics of circular water jet impinging on high-temperature stainless steel plate”, Applied Thermal Engineering, Vol. 62, pp.738-746, 2014.
    21. Fu, T.L., Wang, Z.D., Deng, X.T., Wang, G.D., “The influence of spray inclination angle on the ultra fast cooling of steel plate in spray cooling condition”, Applied Thermal Engineering, Vol.78, pp.500-506, 2015.
    22. Wang, B.X., Lin, D., Xie, Q., Wang, Z.D., Wang, G.D., “ Heat transfer characteristics during jet impingement on a high-temperature plate surface”, Applied Thermal Engineering, Vol.100, pp. 902-910, 2016.
    23. Hall, D.D., Mudawar, I., “Experimental and numerical study of quenching complex-shaped metallic alloys with multiple overlapping sprays”, Int. J. Heat Mass Transfer, Vol.7, pp.1201-1216, 1995.
    24. Horacek, B., Kim, J., Kiger, K.T., “Spray cooling using multiple nozzles: visualization and wall heat transfer measurements”, IEEE Transactions on Device and Materials Reliability, Vol.4, pp.614-625, 2004.
    25. Horsky, J., Raudensky, M., Tseng, A.A., “Heat transfer study of secondary cooling in continuous casting”, AISTech, Iron & Steel technology Conference and exposition, 2005.
    26. Shtevi, T., Atal, M., Rashkovan, A., Katz, M., Kahana, E., Sher, E., “Experimental study on the overlapping sprays cooling of hot surfaces above leidenfrost point using industrial atomizers”, ILASS, pp.1-4, 2008.
    27. Stark, P., Schuettenberg, S., Fritsching, U., “Spray quenching of specimen for ring heat treatment”, Computational Methods in Multiphase Flow, Vol.70, pp.201-212, 2011.
    28. Horsky, J., Kotrbacek, P., Kvapil, J., Schoerkhuber, K., “Optimization of working roll cooling in hot rolling”, 9th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics, HEFAT, pp.685-690, 2012.
    29. Pohanka, M., Votavova, H., “Overcooling in overlap areas during hydraulic descaling”, Materials and technology, Vol.50, pp.575-578, 2016.
    30. Huang, C.H.,Yan, J.Y., “An inverse problem in simultaneously measuring temperature-dependent thermal conductivity and heat capacity”, Int. J. Heat Mass Transfer. Vol. 38, No. 18, pp. 3433-3441, 1995.
    31. Huang, C.H., Hsu, G.C., Jang, J.Y., “A nonlinear inverse problem for the prediction of location thermal contact conductance in plate finned-tube heat exchangers”, Heat and Mass Transfer, Vol. 37, pp. 351-359, 2001.
    32. Lee, H.M., Chou, H.M., Yang, Y.C., “The function estimation in predicting heat flux of pin fins with variable heat transfer coefficients”, Energy Conversion and Management ,Vol. 45,PP.1749-1758,2004.
    33. Jang, J.Y., Hsu, L.F., Leu, J.F., “Optimization of the span angle and location of vortex generators in a plate-fin and tube heat exchanger” , International Journal of Heat and Mass Transfer, Vol. 67, pp.432-444, 2015.
    34. Jang, J.Y., Tsai, Y.G., “Optimization of thermoelectric generator module spacing and spreader thickness used in a waste heat recovery system” , Applied Thermal Engineering, Vol. 51, pp.677-689,2015.
    35. Jang, J.Y., Chen, C.C., “Optimization of louvered-fin heat exchanger with variable louver angles” , Applied Thermal Engineering, Vol. 91, pp.138-150,2015.
    36. Jang, J.Y., Huang, J.B., “Optimization of a slab heating pattern for minimum energy consumption in a walking-beam type reheating furnace” , Applied Thermal Engineering, Vol. 85, pp.313-321,2015.
    37. Chen, H.T., Hsu, W.L., “Estimation of heat transfer coefficient on the fin of annular-finned tube heat exchangers in natural convection for various fin spacings” , International Journal of Heat and Mass Transfer, Vol. 50, pp.1750-1761,2007.
    38. Huang , C.H., Yuan, I.C., Ay, H., “ An experimental study in determining the local heat transfer coefficients for the plate finned-tube heat exchangers”, International Journal of Heat and Mass Transfer, Vol. 52, pp.4883-4893, 2009.
    39. Zhong, L.C., Liu, Q.X., Wang, W.Z., “Computer simulation of heat transfer in regenerative chambers of self-preheating hot blast stoves”, ISIJ International, Vol. 44, pp.795-800, 2004.
    40. Zhang, Y.H., Huang, X., Houshangi, N., “Model predictive control via system identification for a hot blast stove”, Canadian Conference on Electrical and Computer Engineering, pp.809-813, 2008.
    41. Kimura, Y., Takatani, K., Otsu, N., “Three dimensional mathematical modeling and designing of hot Stove”, ISIJ International, Vol. 50, pp.1040-1047, 2010.
    42. Tomas Andres Flen, M., Guidi, F., Benedetti, R., Lefranc, G., “Modelization and identification of the hot blast stove’s heating cycle”, 2011 9th IEEE International Conference on Control and Automation (ICCA), pp.1267-1273, 2011.
    43. Zhang, F.M., Mao, Q.W., Mei, C.H., Li, X., Hu, Z. R., “Dome combustion hot blast stove for huge blast furnace”, Journal Of Iron and Steel Research, Vol.19, pp.1-7, 2012.
    44. Qi, F.S., Liu, Z.Q., Yao, C.Y., Li, B.K., “Numerical study and structural optimization of a top combustion hot blast stove”, Advances in Mechanical Engineering, Vol.7, pp.1-10, 2014.
    45. Zetterholm, J., Ji, X.Y., Sundelin, B., Martin, P.M., Wang, C., “Model development of a blast furnace stove”, The 7th International Conference on Applied Energy - ICAE2015, Energy Procedia, Vol. 75, pp.1758-1765, 2015.
    46. Zetterholm, J., Ji, X., Sundelin, B., Martin, P.M., Wang, C., “Dynamics modelling for the hot blast stove”, Applied Energy, Vol. 185, pp.2142-2150, 2017.
    47. Yan, K., Cheng, S.S., “Stress and deformation analysis of hot blast stove piping system”, The minerals, Metals & Materials Society, Vol. 82, pp.747-756, 2017.
    48. Yan, K., Cheng, S.S., “Stress and deformation analysis of top combustion hot blast stove shell”, The minerals, Metals & Materials Society, Vol. 82, pp.757-765, 2017.
    49. ANSYS, version, 18.2 User’s guide, USA. New Hampshire. 2018.
    50. Fluent Inc. ANSYS Fluent, Version, 18.1 User’s Guide; Fluent Inc.: New York, NY, USA, 2018.
    51. JmatPro 9.0, Practical software for material properties, Sente Software Ltd, 2017.
    52. Hestenes, M.R., Stiefel, E., “Methods of conjugate gradients for solving linear systems”, Journal of Research of the National Bureau of Standards, Vol. 49, No. 6, pp. 409–436, 1952.
    53. Fletcher, R., Reeves, C.M., “Function minimization by conjugate gradients”, Computer Journal, Vol. 7, No. 2, pp. 149–154, 1964.
    54. Fried, I., Metzler, J., “SOR vs. Conjugate gradients in a finite element discretization”, International Journal for Numerical Methods in Engineering, Vol. 12, pp. 1329–1342, 1978.
    55. Cheng, C.H., Chang, M.H., “A simplified conjugate-gradient method for shape identification based on thermal data”, Numerical Heat Transfer, Vol. 43, No. 5, pp. 489–507, 2003.
    56. Moffat, R.J., “Describing the uncertainties in experimental results”, Experimental Thermal and Fluid Science, Vol. 1, No. 1, pp. 3–17, 1988.
    57. Bevington, P., Robinson D.K., Editor, Data Reduction and Error Analysis for the Physical Sciences, 3rd ed., McGraw-Hill, New York, USA, 2002.
    58. Kline, S.J., McClintock, F.A., “Describing the uncertainties in experimental”, ASME, Mechanical Engineering, Vol. 75, pp.3-8, 1953.
    59. Wendelstorf, J., Spitzer, K.H., Wendelstorf, R., “Spray water cooling heat transfer at high temperatures and liquid mass fluxes”, International Journal of Heat and Mass Transfer, Vol. 51, pp.4902–4910, 2008.
    60. Incropera, F.P., Dewitt, D.P., Bergman, T. L., Lavine, A.S., “Principles of heat and mass transfer”, International Student Version, Seventh Edition, 2013.
    61. Launder, B.E., Spalding, D.,B., “The numerical computation of turbulent flows”, Comp. Methods in Appl. Mech. and Engrg, Vol. 3, pp. 269-289, 1974.
    62. Mason, E.A., Saxena, S.C., “Approximate formula for the thermal conductivity of gas mixtures”, Phys Fluids,1958.
    63. Wilke, C.R., “A viscosity equation for gas mixtures”, J Chem Phys, 1950.
    64. Thomas, F.I., Peter, E.L., “Steam and gas tables with computer Equations”, 1st ed. Academic Press, 1984.
    65. Refractories handbook, “The technical association of refractories”, 1998.
    66. Schacht, C.A., “Refractory linings thermomechanical design and applications”,NewYork, Basel, Hongkong: Marcel Dekker, Inc; 1995.

    下載圖示 校內:2022-06-11公開
    校外:2022-06-11公開
    QR CODE