簡易檢索 / 詳目顯示

研究生: 王景彥
Wang, Ching-Yen
論文名稱: 藉由鋁修飾來增進n型氧化鋅奈米粒子與p型氮化鎵異質發光二極體之紫外電致發光表現
Performance improvement of ultraviolet electroluminescence from Al-decorated n-ZnO nanoparticles/p-GaN heterojunction light-emitting diodes
指導教授: 徐旭政
Hsu, Hsu-Cheng
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 71
中文關鍵詞: 氧化鋅表面電漿子發光二極體
外文關鍵詞: Zinc Oxide, Surface plasmons, Light emitting diode
相關次數: 點閱:77下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們成功地藉由鋁(Al)的表面電漿共振 (surface-plasmon resonance)來增強光致放光(photoluminescence, PL)及電致放光(electroluminescence, EL)量測之氧化鋅奈米球之近能帶(Near band edge)放光。這種螢光增強效果是來自於表面電漿子共振效應的影響。主要是因為鋁對於短波長(紫外)有顯著的表現,而其共振波長在紫外波段和氧化鋅的近能帶放光波段非常相近,因此我們期望鋁和氧化鋅的結合能夠使氧化鋅奈米球之近能帶放光得到更好的表現。藉由穿透量測的結果可驗證氧化鋅的激子(excitons)與鋁的表面電漿共振耦合。在我們的實驗中,在n型氧化鋅奈米球與p型氮化鎵(p-GaN)所製成之異質結構二極體元件中加入鋁來改善元件表現。在鋁之表面電漿子共振效應的作用下,增強氧化鋅之近能帶放光強度約增強20倍左右。接著為了更進一步改善元件,我們將鋁鍍在元件中的不同位置來觀察其電致放光增強效果,並且得到最佳的效果。上述表面電漿子共振增強效應機制可於未來設計高效率之固態光源。

    We demonstrate that both intensities of photoluminescence (PL) and electroluminescence (EL) from the near band edge emission (NBE) of ZnO nanoparticles can be improved by the use of surface-plasmon resonance (SPR) with aluminum (Al). The origin of such luminescence enhancement is attributed to the SPR. Since Al has promise for significant-sensing capabilities over short-wavelength portions of the electromagnetic spectrum, the resonant wavelength is near the ZnO near-UV emission region. Therefore, we think that the NBE of ZnO can be much better performance from coupling with Al. Results of the transmittance measurement show that the energy resonant coupling between the excitons of ZnO and the SPs of Al. Above 20-fold enhancement of EL intensity was obtained compared with the device without Al NPs decoration. The results reveal that the enhancement of the NBE emission of ZnO is correlated to the deposition conditions of the Al interlayers. Next, we change the deposited position of Al in n-ZnO nanoparticles/p-GaN film device, and better performance can be obtained. Finally, our results provide an alternate approach to design highly efficient solid-state light sources in the future.

    摘要 I ABSTRACT II 誌謝 III LIST OF TABLES IV LIST OF FIGURES V Chapter 1. Introduction 1 1.1 Preface 1 1.2 Motivation 13 Chapter 2. Background Theory 15 2.1 Zinc Oxide 15 2.1.1 Structural properties 15 2.1.2 Optical properties 17 2.1.3 Ultraviolet emission 18 2.1.4 Green emission 20 2.2 Surface plasmon 22 2.3 P-N Heterojunction 57-59 25 2.3.1 Structure of a p-n junction 25 2.3.2 Properties of a p-n junction 26 2.4 I-V characteristic of diode 28 Chapter 3. Experiment Process and Measurement 31 3.1 Experiment Process 31 3.1.1 Fabrication of ZnO by sol-gel method 31 3.1.2 Fabrication of LED device 34 3.1.2.1 Substrate clean 34 3.1.2.2 Preparation of the n-ZnO/p-GaN device 34 3.1.2.3 Preparation of the n-ZnO/ Al /p-GaN device 35 3.1.2.4 Preparation of the n-ZnO/Al/ZnO /p-GaN device 36 3.1.2.5 Electron beam (e-beam) deposition system 38 3.2 Measurement Instrument 39 3.2.1 Field Emission Scanning Electron Microscopy (FE-SEM) 39 3.2.2 Photoluminescence (PL) 40 3.2.3 Absorption spectra 42 3.2.4 Electroluminescence (EL) 43 3.2.5 Semiconductor Characterization System 45 Chapter 4. Experiment Results and Discussions 46 4.1 Structure Analysis 46 4.2 Optical measurement 47 4.2.1 RT PL spectra of Al-coated ZnO nanoparticles 47 4.2.2 Absorption spectra of quartz substrate without and with Al 48 4.3 Resonant coupling between Al and ZnO 49 4.4 I-V characteristics of LEDs 50 4.5 Electroluminescence measurement of LEDs 53 Chapter 5. Conclusion 65 Chapter 6. Future work 66 REFERENCE 67 APPENDIX 71

    1 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R.Russo, and P. Yang, Science 292 (5523), 1897 (2001).
    2 H. T. Ng, J. Han, Toshishige Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, Nano Letters 4 (7), 1247 (2004).
    3 X. Yang, C. X. Shan, M. M. Jiang, J. M. Qin, G. C. Hu, S. P. Wang, H. A. Ma, X. P. Jia, and D. Z. Shen, Journal of Materials Chemistry C 3 (20), 5292 (2015).
    4 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Materials 4 (1), 42 (2005).
    5 Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang, and Y. F. Chen, Nano Letters 9 (5), 1839 (2009).
    6 M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, Journal of Materials Chemistry 22 (33), 17055 (2012).
    7 J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, Applied Physics Letters 95 (13), 131117 (2009).
    8 X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, Advanced Materials 21 (27), 2767 (2009).
    9 J. Dai, C. X. Xu, and X. W. Sun, Advanced Materials 23 (35), 4115 (2011).
    10 O. Lupan, T. Pauporté, and B. Viana, Advanced Materials 22 (30), 3298 (2010).
    11 X. Mo, H. Long, H. Wang, S. Li, Z. Chen, J. Wan, Y. Feng, Y. Liu, Y. Ouyang, and G. Fang, Applied Physics Letters 105 (6), 063505 (2014).
    12 C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang, and J. J. Huang, Applied Physics Letters 91 (9), 091107 (2007).
    13 H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, Y. M. Lu, and Z. K. Tang, Advanced Materials 21 (16), 1613 (2009).
    14 M. A. Abbasi, Z. H. Ibupoto, M. Hussain, O. Nur, and M. Willander, Nanoscale Research Letters 8 (1), 320 (2013).
    15 L. Zhang, Q. Li, L. Shang, F. Wang, C. Qu, and F. Zhao, Optics Express 21 (14), 16578 (2013).
    16 T. Wang, H. Wu, H. Zheng, J. B. Wang, Z. Wang, C. Chen, Y. Xu, and C. Liu, Applied Physics Letters 102 (14), 141912 (2013).
    17 J. M. Lin, Y. H. Lin, C. L. Cheng, and Y. F. Chen, Nanotechnology 17 (17), 4391 (2006).
    18 C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, Applied Physics Letters 96 (7), 071107 (2010).
    19 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, Journal of Applied Physics 112 (1), 013112 (2012).
    20 J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, ACS Applied Materials & Interfaces 6 (20), 18301 (2014).
    21 J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, Faraday Discussions 132 (0), 9 (2006).
    22 S. Nie and S. R. Emory, Science 275 (5303), 1102 (1997).
    23 V. J. Sorger and X. Zhang, Science 333 (6043), 709 (2011).
    24 D. M. Schaadt, B. Feng, and E. T. Yu, Applied Physics Letters 86 (6), 063106 (2005).
    25 K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, Li Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, Applied Physics Letters 94 (15), 151102 (2009).
    26 S. Chen, X. Pan, H. He, W. Chen, W. Dai, C. Chen, H. Zhang, P. Ding, J. Huang, B. Lu, J. Lu, and Z. Ye, Optics Letters 40 (12), 2782 (2015).
    27 B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, CrystEngComm 13 (11), 3678 (2011).
    28 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, Applied Physics Letters 99 (18), 181116 (2011).
    29 W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, Applied Physics Letters 101 (14), 142101 (2012).
    30 W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G.Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, Nanoscale 5 (18), 8634 (2013).
    31 S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, Journal of Applied Physics 121 (10), 103104 (2017).
    32 J. Zhang and L. Zhang, Advances in Optics and Photonics 4 (2), 157 (2012).
    33 K. Wu, Y.Lu, H. He, J. Huang, B. Zhao, and Z. Ye, Journal of Applied Physics 110 (2), 023510 (2011).
    34 J. Lu, Z. Shi, Y. Wang, Y. Lin, Q. Zhu, Z. Tian, J. Dai, S. Wang, and C. Xu, Scientific Reports 6, 25645 (2016).
    35 Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, Applied Physics Letters 105 (14), 142107 (2014).
    36 J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, and P. Li, ACS Photonics 2 (1), 73 (2015).
    37 Q. Zhu, F. Qin, J. Lu, Z. Zhu, H. Nan, Z. Shi, Z. Ni, and C. Xu, Nano Research 10 (6), 1996 (2016).
    38 C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, Applied Physics Express 5 (6), 062003 (2012).
    39 A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, Applied Physics Letters 90 (23), 231106 (2007).
    40 W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, CrystEngComm 13 (7), 2336 (2011).
    41 T. Nakamura, S. Sonoda, and S. Adachi, Laser Physics Letters 11 (1), 016004 (2014).
    42 D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Communications 99 (12), 873 (1996).
    43 R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Nano-Micro Letters 7 (2), 97 (2015).
    44 R. M. Hewlett and M. A. McLachlan, Advanced Materials 28 (20), 3893 (2016).
    45 D. Wang, F. Wang, Y. Wang, Y. Fan, B. Zhao, and D. Zhao, The Journal of Physical Chemistry C 119 (5), 2798 (2015).
    46 T. F. Dai, W. C. Hsu, and H.C. Hsu, Optics Express 22 (22), 27169 (2014).
    47 B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Physica status solidi (b) 241 (2), 231 (2004).
    48 A. B. Djurišić and Y. H. Leung, Small 2 (8-9), 944 (2006).
    49 M. Liu, A. H. Kitai, and P. Mascher, Journal of Luminescence 54 (1), 35 (1992).
    50 B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79 (7), 943 (2001).
    51 Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, Nanoscale Research Letters 2 (6), 297 (2007).
    52 K. A. Willets and R. P. Van Duyne, Annual Review of Physical Chemistry 58 (1), 267 (2007).
    53 Y. Lin , X. Q. Liu, T. Wang, C. Chen, H. Wu, L. Liao, and C. Liu, Nanotechnology 24 (12), 125705 (2013).
    54 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Journal of Physical Chemistry B 107 (3), 668 (2003).
    55 劉威志 吳民耀, 物理雙月刊, 二十八卷二期486 (2006).
    56 E. Hutter and J.  H Fendler, Advanced Materials 16 (19), 1685 (2004).
    57 D. A. Neamen, McGraw-Hill (2011).
    58 S. O. Kasap, PEARSON 2nd (2013).
    59 賴芳儀 郭浩中, 郭守義, 五南圖書出版公司 (2012).
    60 E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, Materials Chemistry and Physics 80 (1), 257 (2003).
    61 H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Applied Physics Letters 102 (1), 013109 (2013).
    62 C. Yang, L. Tang, Q. Li, A. Bai, Y. Wang, and Y. Yu, Nano 10 (05), 1550074 (2015).
    63 A. Anžlovar, K. Kogej, Z. C. Orel, and M. Žigon, Crystal Growth & Design 14 (9), 4262 (2014).
    64 X. Xu, C. Xu, Y. Lin, T. Ding, S. Fang, Z. Shi, W. Xia, and J. Hu, Applied Physics Letters 100 (17), 172401 (2012).
    65 N. Zhang, W. Tang, P. Wang, X. Zhang, and Z. Zhao, CrystEngComm 15 (17), 3301 (2013).
    66 R. Viter, Z. Balevicius, A. A. Chaaya, I. Baleviciute, S. Tumenas, L. Mikoliunaite, A. Ramanavicius, Z. Gertnere, A. Zalesska, V. Vataman, V. Smyntyna, D. Erts, P. Miele, and M. Bechelany, Journal of Materials Chemistry C 3 (26), 6815 (2015).
    67 Y. Zeng, Y. Zhao, and Y. Jiang, Journal of Alloys and Compounds 625, 175 (2015).
    68 H. B. Michaelson, Journal of Applied Physics 48 (11), 4729 (1977).
    69 Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, Nanoscale 8 (8), 4463 (2016).
    70 Z. Shi, X. Xia, W. Yin, S. Zhang, H.i Wang, J. Wang, L. Zhao, X. Dong, B. Zhang, and G. Du, Applied Physics Letters 100 (10), 101112 (2012).
    71 H. Wang, Y. Zhao, C. Wu, X. Dong, B. Zhang, G. Wu, Y. Ma, and G. Du, Journal of Luminescence 158, 6 (2015).
    72 L. Yang, W. Liu, H. Xu, J. Ma, C. Zhang, C. Liu, Z. Wang, and Y. Liu, Journal of Materials Chemistry C 5 (13), 3288 (2017).
    73 C. Chen, J. Chen, J. Zhang, S. Wang, W. Zhang, R. Liang, J. Dai, and C. Chen, Nanoscale Research Letters 11 (1), 480 (2016).

    無法下載圖示 校內:2022-01-01公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE