| 研究生: |
王景彥 Wang, Ching-Yen |
|---|---|
| 論文名稱: |
藉由鋁修飾來增進n型氧化鋅奈米粒子與p型氮化鎵異質發光二極體之紫外電致發光表現 Performance improvement of ultraviolet electroluminescence from Al-decorated n-ZnO nanoparticles/p-GaN heterojunction light-emitting diodes |
| 指導教授: |
徐旭政
Hsu, Hsu-Cheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 英文 |
| 論文頁數: | 71 |
| 中文關鍵詞: | 氧化鋅 、表面電漿子 、發光二極體 |
| 外文關鍵詞: | Zinc Oxide, Surface plasmons, Light emitting diode |
| 相關次數: | 點閱:77 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們成功地藉由鋁(Al)的表面電漿共振 (surface-plasmon resonance)來增強光致放光(photoluminescence, PL)及電致放光(electroluminescence, EL)量測之氧化鋅奈米球之近能帶(Near band edge)放光。這種螢光增強效果是來自於表面電漿子共振效應的影響。主要是因為鋁對於短波長(紫外)有顯著的表現,而其共振波長在紫外波段和氧化鋅的近能帶放光波段非常相近,因此我們期望鋁和氧化鋅的結合能夠使氧化鋅奈米球之近能帶放光得到更好的表現。藉由穿透量測的結果可驗證氧化鋅的激子(excitons)與鋁的表面電漿共振耦合。在我們的實驗中,在n型氧化鋅奈米球與p型氮化鎵(p-GaN)所製成之異質結構二極體元件中加入鋁來改善元件表現。在鋁之表面電漿子共振效應的作用下,增強氧化鋅之近能帶放光強度約增強20倍左右。接著為了更進一步改善元件,我們將鋁鍍在元件中的不同位置來觀察其電致放光增強效果,並且得到最佳的效果。上述表面電漿子共振增強效應機制可於未來設計高效率之固態光源。
We demonstrate that both intensities of photoluminescence (PL) and electroluminescence (EL) from the near band edge emission (NBE) of ZnO nanoparticles can be improved by the use of surface-plasmon resonance (SPR) with aluminum (Al). The origin of such luminescence enhancement is attributed to the SPR. Since Al has promise for significant-sensing capabilities over short-wavelength portions of the electromagnetic spectrum, the resonant wavelength is near the ZnO near-UV emission region. Therefore, we think that the NBE of ZnO can be much better performance from coupling with Al. Results of the transmittance measurement show that the energy resonant coupling between the excitons of ZnO and the SPs of Al. Above 20-fold enhancement of EL intensity was obtained compared with the device without Al NPs decoration. The results reveal that the enhancement of the NBE emission of ZnO is correlated to the deposition conditions of the Al interlayers. Next, we change the deposited position of Al in n-ZnO nanoparticles/p-GaN film device, and better performance can be obtained. Finally, our results provide an alternate approach to design highly efficient solid-state light sources in the future.
1 M. H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R.Russo, and P. Yang, Science 292 (5523), 1897 (2001).
2 H. T. Ng, J. Han, Toshishige Yamada, P. Nguyen, Y. P. Chen, and M. Meyyappan, Nano Letters 4 (7), 1247 (2004).
3 X. Yang, C. X. Shan, M. M. Jiang, J. M. Qin, G. C. Hu, S. P. Wang, H. A. Ma, X. P. Jia, and D. Z. Shen, Journal of Materials Chemistry C 3 (20), 5292 (2015).
4 A. Tsukazaki, A. Ohtomo, T. Onuma, M. Ohtani, T. Makino, M. Sumiya, K. Ohtani, S. F. Chichibu, S. Fuke, Y. Segawa, H. Ohno, H. Koinuma, and M. Kawasaki, Nature Materials 4 (1), 42 (2005).
5 Y. P. Hsieh, H. Y. Chen, M. Z. Lin, S. C. Shiu, M. Hofmann, M. Y. Chern, X. Jia, Y. J. Yang, H. J. Chang, H. M. Huang, S. C. Tseng, L. C. Chen, K. H. Chen, C. F. Lin, C. T. Liang, and Y. F. Chen, Nano Letters 9 (5), 1839 (2009).
6 M. Deo, D. Shinde, A. Yengantiwar, J. Jog, B. Hannoyer, X. Sauvage, M. More, and S. Ogale, Journal of Materials Chemistry 22 (33), 17055 (2012).
7 J. Y. Wang, C. Y. Lee, Y. T. Chen, C. T. Chen, Y. L. Chen, C. F. Lin, and Y. F. Chen, Applied Physics Letters 95 (13), 131117 (2009).
8 X. M. Zhang, M. Y. Lu, Y. Zhang, L. J. Chen, and Z. L. Wang, Advanced Materials 21 (27), 2767 (2009).
9 J. Dai, C. X. Xu, and X. W. Sun, Advanced Materials 23 (35), 4115 (2011).
10 O. Lupan, T. Pauporté, and B. Viana, Advanced Materials 22 (30), 3298 (2010).
11 X. Mo, H. Long, H. Wang, S. Li, Z. Chen, J. Wan, Y. Feng, Y. Liu, Y. Ouyang, and G. Fang, Applied Physics Letters 105 (6), 063505 (2014).
12 C. P. Chen, M. Y. Ke, C. C. Liu, Y. J. Chang, F. H. Yang, and J. J. Huang, Applied Physics Letters 91 (9), 091107 (2007).
13 H. Zhu, C. X. Shan, B. Yao, B. H. Li, J. Y. Zhang, Z. Z. Zhang, D. X. Zhao, D. Z. Shen, X. W. Fan, Y. M. Lu, and Z. K. Tang, Advanced Materials 21 (16), 1613 (2009).
14 M. A. Abbasi, Z. H. Ibupoto, M. Hussain, O. Nur, and M. Willander, Nanoscale Research Letters 8 (1), 320 (2013).
15 L. Zhang, Q. Li, L. Shang, F. Wang, C. Qu, and F. Zhao, Optics Express 21 (14), 16578 (2013).
16 T. Wang, H. Wu, H. Zheng, J. B. Wang, Z. Wang, C. Chen, Y. Xu, and C. Liu, Applied Physics Letters 102 (14), 141912 (2013).
17 J. M. Lin, Y. H. Lin, C. L. Cheng, and Y. F. Chen, Nanotechnology 17 (17), 4391 (2006).
18 C. W. Cheng, E. J. Sie, B. Liu, C. H. A. Huan, T. C. Sum, H. D. Sun, and H. J. Fan, Applied Physics Letters 96 (7), 071107 (2010).
19 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, F. T. Si, H. L. Gao, J. J. Dong, and X. Liu, Journal of Applied Physics 112 (1), 013112 (2012).
20 J. Lu, J. Li, C. Xu, Y. Li, J. Dai, Y. Wang, Y. Lin, and S. Wang, ACS Applied Materials & Interfaces 6 (20), 18301 (2014).
21 J. A. Dieringer, A. D. McFarland, N. C. Shah, D. A. Stuart, A. V. Whitney, C. R. Yonzon, M. A. Young, X. Zhang, and R. P. Van Duyne, Faraday Discussions 132 (0), 9 (2006).
22 S. Nie and S. R. Emory, Science 275 (5303), 1102 (1997).
23 V. J. Sorger and X. Zhang, Science 333 (6043), 709 (2011).
24 D. M. Schaadt, B. Feng, and E. T. Yu, Applied Physics Letters 86 (6), 063106 (2005).
25 K. W. Liu, Y. D. Tang, C. X. Cong, T. C. Sum, A. C. H. Huan, Z. X. Shen, Li Wang, F. Y. Jiang, X. W. Sun, and H. D. Sun, Applied Physics Letters 94 (15), 151102 (2009).
26 S. Chen, X. Pan, H. He, W. Chen, W. Dai, C. Chen, H. Zhang, P. Ding, J. Huang, B. Lu, J. Lu, and Z. Ye, Optics Letters 40 (12), 2782 (2015).
27 B. J. Niu, L. L. Wu, W. Tang, X. T. Zhang, and Q. G. Meng, CrystEngComm 13 (11), 3678 (2011).
28 S. G. Zhang, X. W. Zhang, Z. G. Yin, J. X. Wang, J. J. Dong, H. L. Gao, F. T. Si, S. S. Sun, and Y. Tao, Applied Physics Letters 99 (18), 181116 (2011).
29 W. Z. Liu, H. Y. Xu, L. X. Zhang, C. Zhang, J. G. Ma, J. N. Wang, and Y. C. Liu, Applied Physics Letters 101 (14), 142101 (2012).
30 W. Z. Liu, H. Y. Xu, C. L. Wang, L. X. Zhang, C. Zhang, S. Y. Sun, J. G.Ma, X. T. Zhang, J. N. Wang, and Y. C. Liu, Nanoscale 5 (18), 8634 (2013).
31 S. Dellis, N. Kalfagiannis, S. Kassavetis, C. Bazioti, G. P. Dimitrakopulos, D. C. Koutsogeorgis, and P. Patsalas, Journal of Applied Physics 121 (10), 103104 (2017).
32 J. Zhang and L. Zhang, Advances in Optics and Photonics 4 (2), 157 (2012).
33 K. Wu, Y.Lu, H. He, J. Huang, B. Zhao, and Z. Ye, Journal of Applied Physics 110 (2), 023510 (2011).
34 J. Lu, Z. Shi, Y. Wang, Y. Lin, Q. Zhu, Z. Tian, J. Dai, S. Wang, and C. Xu, Scientific Reports 6, 25645 (2016).
35 Y. Lin, J. Li, C. Xu, X. Fan, and B. Wang, Applied Physics Letters 105 (14), 142107 (2014).
36 J. Lu, C. Xu, J. Dai, J. Li, Y. Wang, Y. Lin, and P. Li, ACS Photonics 2 (1), 73 (2015).
37 Q. Zhu, F. Qin, J. Lu, Z. Zhu, H. Nan, Z. Shi, Z. Ni, and C. Xu, Nano Research 10 (6), 1996 (2016).
38 C. S. Wang, H. Y. Lin, J. M. Lin, and Y. F. Chen, Applied Physics Express 5 (6), 062003 (2012).
39 A. P. Abiyasa, S. F. Yu, S. P. Lau, E. S. P. Leong, and H. Y. Yang, Applied Physics Letters 90 (23), 231106 (2007).
40 W. Tang, D. Huang, L. Wu, C. Zhao, L. Xu, H. Gao, X. Zhang, and W. Wang, CrystEngComm 13 (7), 2336 (2011).
41 T. Nakamura, S. Sonoda, and S. Adachi, Laser Physics Letters 11 (1), 016004 (2014).
42 D. C. Reynolds, D. C. Look, and B. Jogai, Solid State Communications 99 (12), 873 (1996).
43 R. Kumar, O. Al-Dossary, G. Kumar, and A. Umar, Nano-Micro Letters 7 (2), 97 (2015).
44 R. M. Hewlett and M. A. McLachlan, Advanced Materials 28 (20), 3893 (2016).
45 D. Wang, F. Wang, Y. Wang, Y. Fan, B. Zhao, and D. Zhao, The Journal of Physical Chemistry C 119 (5), 2798 (2015).
46 T. F. Dai, W. C. Hsu, and H.C. Hsu, Optics Express 22 (22), 27169 (2014).
47 B. K. Meyer, H. Alves, D. M. Hofmann, W. Kriegseis, D. Forster, F. Bertram, J. Christen, A. Hoffmann, M. Straßburg, M. Dworzak, U. Haboeck, and A. V. Rodina, Physica status solidi (b) 241 (2), 231 (2004).
48 A. B. Djurišić and Y. H. Leung, Small 2 (8-9), 944 (2006).
49 M. Liu, A. H. Kitai, and P. Mascher, Journal of Luminescence 54 (1), 35 (1992).
50 B. Lin, Z. Fu, and Y. Jia, Applied Physics Letters 79 (7), 943 (2001).
51 Y. Gong, T. Andelman, G. F. Neumark, S. O’Brien, and I. L. Kuskovsky, Nanoscale Research Letters 2 (6), 297 (2007).
52 K. A. Willets and R. P. Van Duyne, Annual Review of Physical Chemistry 58 (1), 267 (2007).
53 Y. Lin , X. Q. Liu, T. Wang, C. Chen, H. Wu, L. Liao, and C. Liu, Nanotechnology 24 (12), 125705 (2013).
54 K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The Journal of Physical Chemistry B 107 (3), 668 (2003).
55 劉威志 吳民耀, 物理雙月刊, 二十八卷二期486 (2006).
56 E. Hutter and J. H Fendler, Advanced Materials 16 (19), 1685 (2004).
57 D. A. Neamen, McGraw-Hill (2011).
58 S. O. Kasap, PEARSON 2nd (2013).
59 賴芳儀 郭浩中, 郭守義, 五南圖書出版公司 (2012).
60 E. W. Seelig, B. Tang, A. Yamilov, H. Cao, and R. P. H. Chang, Materials Chemistry and Physics 80 (1), 257 (2003).
61 H. C. Hsu, H. Y. Huang, M. O. Eriksson, T. F. Dai, and P. O. Holtz, Applied Physics Letters 102 (1), 013109 (2013).
62 C. Yang, L. Tang, Q. Li, A. Bai, Y. Wang, and Y. Yu, Nano 10 (05), 1550074 (2015).
63 A. Anžlovar, K. Kogej, Z. C. Orel, and M. Žigon, Crystal Growth & Design 14 (9), 4262 (2014).
64 X. Xu, C. Xu, Y. Lin, T. Ding, S. Fang, Z. Shi, W. Xia, and J. Hu, Applied Physics Letters 100 (17), 172401 (2012).
65 N. Zhang, W. Tang, P. Wang, X. Zhang, and Z. Zhao, CrystEngComm 15 (17), 3301 (2013).
66 R. Viter, Z. Balevicius, A. A. Chaaya, I. Baleviciute, S. Tumenas, L. Mikoliunaite, A. Ramanavicius, Z. Gertnere, A. Zalesska, V. Vataman, V. Smyntyna, D. Erts, P. Miele, and M. Bechelany, Journal of Materials Chemistry C 3 (26), 6815 (2015).
67 Y. Zeng, Y. Zhao, and Y. Jiang, Journal of Alloys and Compounds 625, 175 (2015).
68 H. B. Michaelson, Journal of Applied Physics 48 (11), 4729 (1977).
69 Y. C. Yao, Z. P. Yang, J. M. Hwang, Y. L. Chuang, C. C. Lin, J. Y. Haung, C. Y. Chou, J. K. Sheu, M. T. Tsai, and Y. J. Lee, Nanoscale 8 (8), 4463 (2016).
70 Z. Shi, X. Xia, W. Yin, S. Zhang, H.i Wang, J. Wang, L. Zhao, X. Dong, B. Zhang, and G. Du, Applied Physics Letters 100 (10), 101112 (2012).
71 H. Wang, Y. Zhao, C. Wu, X. Dong, B. Zhang, G. Wu, Y. Ma, and G. Du, Journal of Luminescence 158, 6 (2015).
72 L. Yang, W. Liu, H. Xu, J. Ma, C. Zhang, C. Liu, Z. Wang, and Y. Liu, Journal of Materials Chemistry C 5 (13), 3288 (2017).
73 C. Chen, J. Chen, J. Zhang, S. Wang, W. Zhang, R. Liang, J. Dai, and C. Chen, Nanoscale Research Letters 11 (1), 480 (2016).
校內:2022-01-01公開