簡易檢索 / 詳目顯示

研究生: 邱南傑
Chiu, Nan-Chieh
論文名稱: 全無機鹵化銻鈣鈦礦發光二極體元件
All inorganic antimony-based halide perovskite light-emitting diodes
指導教授: 郭宗枋
Guo, Tzung-Fang
共同指導教授: 朱治偉
Chu, Chih-Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 92
中文關鍵詞: 全無機鈣鈦礦發光二極體鉛取代鹽類摻雜陷阱鈍化變溫光致發光
外文關鍵詞: all inorganic perovskite light emitting diodes, lead-free, salt additive, space-charge confinement
相關次數: 點閱:68下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要為研究如何製備出全無機銻鈣鈦礦發光二極體,我們所使用的發光層為以銻(Sb)做為取代鉛的Cs3Sb2I9鈣鈦礦材料,Cs3Sb2I9薄膜中的銻離子會因為退火時的高溫而散失,我們藉由製造出一Sb蒸氣環境與薄膜進行離子交換反應來改善,並透過調降溫度來降低蒸氣濃度以及與薄膜的反應速度能夠讓薄膜孔洞減少且變得平整,進而有效提升元件的表現。A3Sb2X9結構本身存在著相當多的deep-level defects,會導致抑制放光以及降低輻射複合率,我們利用摻雜氯化膽鹼來鈍化結構中之缺陷,結果發現確實能夠改善薄膜品質以及大幅改善元件之表現,更能夠提升薄膜穩定度,藉由薄膜特性量測以及低溫光致發光量測來探討其物理光學性質產生的變化。

    The lead-free perovskite have attracted more and more attentions these days because of the deadly toxic of the lead inside the structure. However, the applications of the lead-free perovskite were mainly focus on solar cells. In previous study, we noticed a material “Cs3Sb2I9”,which has a great potential to make light emitting diodes. Here, we fabricated the first all inorganic antimony-based halide light emitting diodes. We reduced the temperature and slow down the vaper-film ion exchange reaction for making a compact, smooth pin-hole less morphology. Next we doped choline chloride in the Cs3Sb2I9 perovskite film. The chloride ion can make Cs3Sb2I9 formed as a stronger near direct bandgap layer structure and reduced the grain size to confine the space-charge that can improved the radiative recombination efficiency. As a result, the device performance had markedly enhanced and the stability of the film can stored in air around 60 days.

    目錄 摘要 I All inorganic antimony-based halide perovskite light-emitting diodes II 致謝 X 目錄 XII 表目錄 XV 圖目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 有機電激發光元件的發展 3 1-3 研究動機與大綱 8 1-3-1 研究動機 8 1-3-2 論文大綱 9 第二章 鈣鈦礦發光二極體發展 10 2-1 前言 10 2-2 薄膜電激發光元件的結構及操作原理 12 2-3 鈣鈦礦發光二極體重要的文獻回顧 15 2-4 全無機鈣鈦礦發光二極體之發展回顧 21 2-5 無鉛鈣鈦礦之演進 26 2-6 本章結論 35 第三章 元件製作步驟與量測分析 36 3-1 前言 36 3-2 鈣鈦礦發光二極體的製備過程 38 3-2-1 ITO基板清潔及圖案化 38 3-2-2 ITO基板清洗 39 3-2-3 電洞傳輸層製作 39 3-2-4 發光層製作 41 3-2-5 電子傳輸層製作 43 3-2-6 陰極製作 44 3-3 元件以及鈣鈦礦薄膜特性量測 46 3-3-1 電流-亮度-電壓量測系統 46 3-3-2 掃描式電子顯微鏡 47 3-3-3 光致發光光譜儀 47 3-3-4 紫外-可見光(UV-Vis)吸收光譜儀 48 3-3-5 X光繞射儀 49 3-4 本章結論 51 第四章全無機銻鈣鈦礦發光二極體研究 52 4-1 前言 52 4-2 改變反應溫度對於鈣鈦礦成膜及發光二極體之影響 54 4-2-1改變反應溫度於鈣鈦礦薄膜之形貌分析 56 4-2-2 改變反應溫度於鈣鈦礦薄膜之結晶程度分析 57 4-2-3 改變反應溫度於鈣鈦礦發光二極體之電性量測 60 4-2-4 本節結論 62 4-3 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜及發光二極體影響 64 4-3-1 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜的結晶程度分析 65 4-3-2 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜之形貌分析 67 4-3-3 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜之光學特性分析 68 4-3-4 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦發光二極體之電性量測 72 4-3-5 摻雜氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜之穩定度分析 78 4-3-6 本節結論 80 4-4 本章結論 82 第五章 總結與未來工作 83 5-1 總結 83 5-2 未來工作延續方向 84 參考文獻 87   表目錄 表3-1、摻雜鹽類參數表 42 表4-1、不同反應溫度下Cs3Sb2I9鈣鈦礦元件比較表 62 圖目錄 圖1-1、Anthracene分子結構示意圖 4 圖1-2、單異質接面雙層結構示意圖 4 圖1-3、PPV(poly phenylene vinylene)分子結構示意圖 5 圖1-4、旋轉塗佈法(spin coating)示意圖 5 圖1-5、各類型太陽能電池效率演進圖 7 圖1-6、Cs3Sb2I9鈣鈦礦光電特性示意圖 9 圖2-1、鈣鈦礦結構ABX3之示意圖 11 圖2-2、單層薄膜電激發光元件結構示意圖 14 圖2-3、多層薄膜電激發光元件結構與能階示意圖 14 圖2-4、PAPI鈣鈦礦發光二極體元件之結構能階圖 15 圖2-5、(AEQT)PbCl4鈣鈦礦發光二極體元件之結構及表現圖 16 圖2-6、CH3NH3PbI3-xClx鈣鈦礦發光二極體元件結構及表現圖 17 圖2-7、CH3NH3PbBr3鈣鈦礦發光二極體之薄膜製備及晶面變化圖……18 圖2-8、(左)MA氣體修飾薄膜示意圖(右) CH3NH3PbBr3鈣鈦礦發光二極體結構能階圖 19 圖2-9、CH3NH3PbBr3鈣鈦礦發光二極體元件表現圖 19 圖2-10、以TPBI修飾MAPbBr3鈣鈦礦之元件表現和機制示意圖 20 圖2-11、CsPbBr3鈣鈦礦薄膜發光二極體薄膜、結構以及元件表現圖 22 圖2-12、CsPbBr3-PEO發光元件表現、製成和薄膜表面圖 23 圖2-12、以ZnO修飾CsPbBr3發光二極體薄膜狀況以及元件表現圖 24 圖2-13、CsPbBr3於不同電洞傳導層上的SEM分析圖 25 圖2-14、調變CsBr與PbBr2對於CsPbBr3發光二極體元件表現圖 25 圖2-15、重金屬鉛元素對於人體的危害圖 26 圖2-16、以Sn取代Pb之MASnI薄膜結構和光電特性示意圖 27 圖2-17、A3B2X9鈣鈦礦晶相示意圖(左)dimer phase(右)layer phase 28 圖2-18、Cs3Sb2I9薄膜表面晶粒、能隙以及光致放光圖 29 圖2-19、DFT 計算Cs3Sb2I9結構內defects圖 29 圖2-20、Pyrene處理表面以及氫碘酸沖洗MA3Sb2I9鈣鈦礦薄膜示意圖 30 圖2-21、Pyrene對於hole-only元件中trap states的影響分析圖 30 圖2-22、A3B2I9結構dimer和layer phase能隙示意圖 31 圖2-23、摻雜Cl-對於A3B2I9鈣鈦礦薄膜變化示意圖 32 圖2-24、Cs3Sb2I9薄膜dimer以及layer form吸收度與能階比較圖 33 圖2-25、Cs3Sb2I9元件結構及表現圖 33 圖2-26、Cs3Sb2Br9量子點示意圖 34 圖3-1、本研究所使用之鈣鈦礦發光二極體元件結構示意圖 37 圖3-2、ITO基板蝕刻圖案化示意圖 39 圖3-3、(上)PEDOT化學結構圖,(下)PSS化學結構圖 40 式3-1、紫外臭氧清潔ITO基板表面反應化學式 41 圖3-4、延續C.W. Chu團隊於2017年所提出的鈣鈦礦薄膜製程示意圖 43 圖3-5、電子傳輸層材料TPBI結構示意圖 44 圖3-6、絕對光強度積分球系統實際照片 46 圖3-7、光致發光原理之示意圖 48 圖3-8、X光繞射儀操作之示意圖 50 圖4-1、元件結構及能階之示意圖 53 圖4-2、實際拍攝之Cs3Sb2I9元件發光照片 54 圖4-3、Cs3Sb2I9元件之電流-電壓曲線圖 55 圖4-4、Cs3Sb2I9薄膜初步SEM膜面分析 55 圖4-5、不同反應溫度下Cs3Sb2I9鈣鈦礦薄膜之形貌分析(a)70°C, (b) 150°C, (c) 200°C, (d) 250°C與(e)300°C 57 圖4-6、反應溫度200°C下Cs3Sb2I9薄膜XRD圖 58 圖4-7、反應溫度150°C下Cs3Sb2I9薄膜XRD圖 59 圖4-8、(上)未反應完全之Cs3Sb2I9 (下)layer phase Cs3Sb2I9 XRD圖 60 圖4-9、不同反應溫度下Cs3Sb2I9薄膜XRD比較圖 60 圖4-10、不同反應溫度下Cs3Sb2I9鈣鈦礦元件之電流-電壓曲線圖 61 圖4-11、不同反應溫度下Cs3Sb2I9鈣鈦礦元件之亮度-電壓曲線圖 62 圖4-12、氯化膽鹼之化學結構式及鈣鈦礦薄膜中density of state比較圖 65 圖4-13、摻雜氯化膽鹼大幅改善低電流下鈣鈦礦LED元件亮度表現 65 圖4-14、摻雜不同比例氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜之XRD圖譜 66 圖4-15、摻雜氯化膽鹼(molar ratio = 100:10)於Cs3Sb2I9鈣鈦礦薄膜之XRD圖譜 67 圖4-16、摻雜不同比例氯化膽鹼於Cs3Sb2I9鈣鈦礦薄膜之形貌分析(a)0, (b)100:3, (c)100:5, (d)100:10 68 圖4-17、變溫ChCl/ Cs3Sb2I9鈣鈦礦薄膜光致發光圖 70 圖4-18、低溫(4k)環境下,調變激發光強度之ChCl/ Cs3Sb2I9薄膜光致發光強度變化比較圖 71 圖4-19、有無摻雜氯化膽鹼之Cs3Sb2I9薄膜吸收度比較 72 圖4-20、摻雜不同比例氯化膽鹼於Cs3Sb2I9元件表現比較圖 73 圖4-21、摻雜不同比例氯化膽鹼於Cs3Sb2I9元件之表現圖: 73 (a)100:3, (b)100:5, (c)100:10 73 圖4-22、摻雜氯化膽鹼於Cs3Sb2I9元件之亮度(candela)表現圖 74 圖4-23、摻雜氯化膽鹼於Cs3Sb2I9元件之電致發光光譜圖(PR655) 75 圖4-24、光譜儀中不同光柵適用範圍表示圖 76 圖4-25、摻雜氯化膽鹼於Cs3Sb2I9元件之亮度(Radiance)表現圖 77 圖4-26、摻雜氯化膽鹼於Cs3Sb2I9元件之電致發光光譜圖(絕對光強度積分球量測系統) 77 圖4-27、摻雜氯化膽鹼於Cs3Sb2I9元件之EQE圖 78 圖4-28、Cs3Sb2I9鈣鈦礦薄膜穩定度測試圖 79 圖4-29、摻雜氯化膽鹼的Cs3Sb2I9鈣鈦礦薄膜穩定度測試圖 80 圖5-1、以氧化鎳(NiOx)作為電洞傳輸層之元件能隙示意圖 84 圖5-2、調變不同鹵素之Cs3Sb2X9元件實際發光圖 85 圖5-3、調變不同鹵素之Cs3Sb2X9薄膜之吸收圖 85

    [1] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
    [2] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
    [3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
    [4] C. -W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
    [5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
    [6] https://www.nrel.gov/pv/assets/images/efficiency-chart.png (National Renewable Energy Laboratory, NREL, accessed 25 April 2018)
    [7] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
    [8] R. J. D. Tilley (2016). Perovskites Structure–Property Relationships. (1st ed.). United Kingdom: John Wiley & Sons, Ltd.
    [9] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615 (2014).
    [10] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
    [11] K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mat. 11, 3028 (1999).
    [12] Z. -K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
    [13] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
    [14] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
    [15] M. -H. Park, S. -H. Jeong, H. -K. Seo, C. Wolf, Y. -H. Kim, H. Kim, J. Byun, J. S. Kim, H. Cho, T. -W. Lee, “Unravelling Additive-based Nanocrystal Pinning for High Efficiency Organic-Inorganic Halide Perovskite Light-Emitting Diodes”, Nano Energy 42, 157 (2017).
    [16] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, “All-Inorganic Perovskite Solar Cells”, J. Am. Chem. Soc. 138, 15829 (2016).
    [17] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection”, Cryst. Growth Des. 7, 2722 (2013).
    [18] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z. K. Tan, M. L. Lai, J. L. M. -Driscoll, N. C. Greenham, R. H. Friend, “Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix”, J. Phys. Chem. Lett. 6, 446 (2015).
    [19] M. Kulbak, D. Cahen, G. Hodes, “How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells”, J. Phys. Chem. Lett. 6, 2452 (2015).
    [20] F. Palazon, F. DiStasio, Q. A. Akkerman, R. Krahne, M. Prato, L. Manna, “Polymerfreefilms of inorganic halide perovskite nanocrystals as UV-to-white colorconversion layers in LEDs”, Chem. Mater. 28, 2902 (2016).
    [21] H. Choi, J. Jeong, H. Kim, S. Kim, B. Walker, G. Kim, J. Kim, “Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells”, Nano Energy 7, 80 (2014).
    [22] Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization”, Cryst. Growth 10, 5717 (2016).
    [23] M. Saliba, T. Matsui, K. Domanski, J. -Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. -P. C. -Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science 354, 206 (2016).
    [24] J. Song , J. Li , X. Li , L. Xu , Y. Dong , H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)”, Adv. Mater. 27, 7162 (2015).
    [25] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. Dewi, N. Mathews, P. Boix, H. Demir, S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes”, J.Phys.Chem.Lett 6, 4360 (2015).
    [26] Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. P. ‐Orive, Y. Du, L. Tan, K. Hanson, B. Ma, H. Gao, “Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes”, Adv. Mater. 28, 8983 (2016).
    [27] N. Yantara , S. Bhaumik , F. Yan , D. Sabba , H. A. Dewi , N. Mathews ,P. P. Boix , H. V. Demir , S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes”, J. Phys. Chem. Lett. 6, 4360 (2015).
    [28] X. Zhang , B. Xu , J. Zhang , Y. Gao , Y. Zheng , K. Wang , X. W. Sun, “All‐Inorganic Perovskite Nanocrystals for High‐Efficiency Light Emitting Diodes: Dual‐Phase CsPbBr3‐CsPb2Br5 Composites”, Adv. Funct. Mater. 26, 4595 (2016).
    [29] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y.M. Yang, M. Wei, B. Sutherland, E. Sargent, J. You, “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes”, Nat. Commun. 8, 15640 (2017).
    [30] H. Cho, C. Wolf, J. Kim, H. Yun, J. Bae, H. Kim, J. Heo, S. Ahn, T.-W. Lee, “Unravelling Additive-based Nanocrystal Pinning for High Efficiency Organic-Inorganic Halide Perovskite Light-Emitting Diodes”, Adv. Mater. 29, 1700579 (2017).
    [31] W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo, S. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science 348, 6240 (2015).
    [32] A. Babayigit, D. Thanh, A. Ethirajan, J. Manca, M. Muller, H. Boyen, B.
    [33] Conings, “Assessing the toxicity of Pb- and Sn-based perovskite solar cells inmodel organism Danio rerio”, Scientific Reports 6, 18721 (2016).
    [34] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, “Toxicity of organometal halide perovskite solar cells”, Nat. Mater. 15, 247 (2016).
    [35] N. Noel, S. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. Haghighirad, A. Sadhanala, G. Eperon, S. Pathak, M. Johnston, A. Petrozza, L. Herz, H. J. Snaith, “Lead-free organic–inorganic tin halide perovskitesfor photovoltaic applications”, Energy Environ. Sci. 7, 3061 (2014).
    [36] H .Hu, B. Donga, W. Zhang, “Low-toxic metal halide perovskites: opportunities and future challenges”, J. Mater. Chem. A 5, 11436 (2017).
    [37] F. Giustino, H. J. Snaith, “Toward Lead-Free Perovskite Solar Cells”, ACS Energy Lett. 1, 1233 (2016).
    [38] F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, “Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells”, J. Am. Chem. Soc. 13, 11445 (2015).
    [39] K. P. Marshall, M. Walker, R. I. Walton, R. A. Hatton, “Elucidating the role of the hole-extracting electrode on the stability and efficiency of inverted CsSnI3/C60 perovskite photovoltaics”, Nat.Energy 1, 16178 (2016).
    [40] W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R. G. Xiong, Y. Yan, “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater. 28, 9333 (2016).
    [41] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. -Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, “Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance”, J. Am. Chem. Soc. 139, 6693 (2017).
    [42] C. C. Stoumpos, L. Frazer, D. J. Clark, Y. -S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, “Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties”, J. Am. Chem. Soc. 137, 6804 (2015).
    [43] M. -G. Ju, J. Dai, L. Ma ,X. -C. Zeng, “Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application”, J. Am. Chem. Soc. 139, 8038 (2017).
    [44] W. Ming, H. Shi, M. -H. Du, “Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3”, J. Mater. Chem. A 4, 13852 (2016).
    [45] A. J. Lehner, D. H. Fabini, H. A. Evans, C. -A. Hébert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, R. Seshadri, “Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9(A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics”, Chem. Mater. 27, 7137 (2015).
    [46] B. W. Park, B. Philippe, X. L. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, “Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application.”, Adv.Mater. 27, 6806 (2015).
    [47] C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, X. Hou, “Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V.”, J. Phys. Chem. 8, 394 (2017).
    [48] M. Vigneshwaran, T. Ohta, S. Iikubo, G. Kapil, T. S. Ripolles, Y. Ogomi, T. Ma, S. S. Pandey, Q. Shen, T. Toyoda, K. Yoshin, T. Minemoto, S. Hayase, “Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route”, Chem. Mater. 28, 6436 (2016).
    [49] B. Saparov, F. Hong, J. Sun, H. Duan, W. Meng, S. Cameron, I. Hill, Y. Yan, B. Mitzi, “Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor”, Chem. Mater. 27, 5622 (2015).
    [50] P. Karuppuswamy, K. M. Boopathic, A. Mohapatra, H. -C. Chen, K. -T. Wong, P. -C. Wanga, C. -W. Chu, “Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells”, Nano Energy 45, 330 (2018).
    [51] F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang, Y. Zhou, “Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells”, J. Am. Chem. Soc. 140, 1019 (2018).
    [52] A. Singh, K. M. Boopathi, A. Mohapatra, Y. -F. Chen, G. Li, C. -W. Chu, “Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9”, ACS Appl. Mater. Interfaces 10, 2566 (2018).
    [53] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, “High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots”, J. Mater. Chem. C 5, 4565 (2017).
    [54] J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp, G. G. Malliaras, “Structural control of mixed ionic and electronic transport in conducting polymers”, Nat. Commun. 7, 11287 (2016).
    [55] M. Sun, Y. Guan, B. Liu, S. Chen, Y. Zhang, H. Cao, L. Xie, Y. Qian, W. Huang, “Spirofluorene-Based Blue Phosphorescent Organic Light-Emitting Diode with Improved Efficiency Using Co-Host Structure”, Gen. Chem. 1, 3 (2015).
    [56] S. J. Dhoble, K. N. Shinde, H. C. Swart, K. Park (2012). Phosphate Phosphors for Solid-State Lighting. (1st ed.). Berlin Heidelberg:Springer-Verlag
    [57] S. E. Dann, Reactions and Characterization of SOLIDS. Royal Society of Chemistry, USA (2002).
    [58] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis. Sixth Edition, Thomson Brooks/Cole, USA (2007).
    [59] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy 2, 17102 (2017).
    [60] T. -F. Guo, “Markedly enhance the performance of perovskite-based light-emitting diodes under the low current regime”, unpoblished result (2018).

    無法下載圖示 校內:2023-08-07公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE