| 研究生: |
邱南傑 Chiu, Nan-Chieh |
|---|---|
| 論文名稱: |
全無機鹵化銻鈣鈦礦發光二極體元件 All inorganic antimony-based halide perovskite light-emitting diodes |
| 指導教授: |
郭宗枋
Guo, Tzung-Fang |
| 共同指導教授: |
朱治偉
Chu, Chih-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Photonics |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 92 |
| 中文關鍵詞: | 全無機鈣鈦礦發光二極體 、鉛取代 、鹽類摻雜 、陷阱鈍化 、變溫光致發光 |
| 外文關鍵詞: | all inorganic perovskite light emitting diodes, lead-free, salt additive, space-charge confinement |
| 相關次數: | 點閱:68 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要為研究如何製備出全無機銻鈣鈦礦發光二極體,我們所使用的發光層為以銻(Sb)做為取代鉛的Cs3Sb2I9鈣鈦礦材料,Cs3Sb2I9薄膜中的銻離子會因為退火時的高溫而散失,我們藉由製造出一Sb蒸氣環境與薄膜進行離子交換反應來改善,並透過調降溫度來降低蒸氣濃度以及與薄膜的反應速度能夠讓薄膜孔洞減少且變得平整,進而有效提升元件的表現。A3Sb2X9結構本身存在著相當多的deep-level defects,會導致抑制放光以及降低輻射複合率,我們利用摻雜氯化膽鹼來鈍化結構中之缺陷,結果發現確實能夠改善薄膜品質以及大幅改善元件之表現,更能夠提升薄膜穩定度,藉由薄膜特性量測以及低溫光致發光量測來探討其物理光學性質產生的變化。
The lead-free perovskite have attracted more and more attentions these days because of the deadly toxic of the lead inside the structure. However, the applications of the lead-free perovskite were mainly focus on solar cells. In previous study, we noticed a material “Cs3Sb2I9”,which has a great potential to make light emitting diodes. Here, we fabricated the first all inorganic antimony-based halide light emitting diodes. We reduced the temperature and slow down the vaper-film ion exchange reaction for making a compact, smooth pin-hole less morphology. Next we doped choline chloride in the Cs3Sb2I9 perovskite film. The chloride ion can make Cs3Sb2I9 formed as a stronger near direct bandgap layer structure and reduced the grain size to confine the space-charge that can improved the radiative recombination efficiency. As a result, the device performance had markedly enhanced and the stability of the film can stored in air around 60 days.
[1] S. R. Forrest, “The road to high efficiency organic light emitting devices”, Org. Electron. 4, 45 (2003).
[2] J. Kido, M. Kimura, K. Nagai, “Multilayer white light-emitting organic electroluminescent device”, Science 267, 1332 (1995).
[3] M. Pope, H. P. Kallmann, P. Magnante, “Electroluminescence in organic crystals”, J. Chem. Phys. 38, 2042 (1963).
[4] C. -W. Tang, S. A. VanSlyke, “Organic electroluminescent diodes”, Appl. Phys. Lett. 57, 913 (1987).
[5] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, “Light-emitting diodes based on conjugated polymers”, Nature 347, 539 (1990).
[6] https://www.nrel.gov/pv/assets/images/efficiency-chart.png (National Renewable Energy Laboratory, NREL, accessed 25 April 2018)
[7] J. C. -Frankel, “Newcomer juices up the race to harness sunlight”, Science 342, 1438 (2013).
[8] R. J. D. Tilley (2016). Perovskites Structure–Property Relationships. (1st ed.). United Kingdom: John Wiley & Sons, Ltd.
[9] H. -S. Kim, S. -H. Im, N. -G. Park, “Organolead halide perovskite: new horizons in solar cell research”, J. Phys. Chem. C 118, 5615 (2014).
[10] M. Era, S. Morimoto, T. Tsutsui, S. Saito, “Organic‐inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2PbI4”, Appl. Phys. Lett. 65, 676 (1994).
[11] K. Chondroudis, D. B. Mitzi, “Electroluminescence from an organic−inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers”, Chem. Mat. 11, 3028 (1999).
[12] Z. -K. Tan, R. S. Moghaddam, M. L. Lai, P. Docampo, R. Higler, F. Deschler, M. Price, A. Sadhanala, L. M. Pazos, D. Credgington, F. Hanusch, T. Bein, H. J. Snaith, R. H. Friend, “Bright light-emitting diodes based on organometal halide perovskite”, Nat. Nanotechnol. 9, 687 (2014).
[13] H. Cho, S. -H. Jeong, M. -H. Park, Y. -H. Kim, C. Wolf, C. -L. Lee, J. H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S. H. Im, R. H. Friend, T. -W. Lee, “Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes”, Science 350, 1222 (2015).
[14] Y. -K. Chih, J. -C. Wang, R. -T. Yang, C. -C. Liu, Y. -C. Chang, Y. -S. Fu, W. -C. Lai, P. Chen, T. -C. Wen, Y. -C. Huang, C. -S. Tsao, T. -F. Guo, “NiOx electrode interlayer and CH3NH2/CH3NH3PbBr3 interface treatment to markedly advance hybrid perovskite-based light-emitting diodes”, Adv. Mater. 28, 8687 (2016).
[15] M. -H. Park, S. -H. Jeong, H. -K. Seo, C. Wolf, Y. -H. Kim, H. Kim, J. Byun, J. S. Kim, H. Cho, T. -W. Lee, “Unravelling Additive-based Nanocrystal Pinning for High Efficiency Organic-Inorganic Halide Perovskite Light-Emitting Diodes”, Nano Energy 42, 157 (2017).
[16] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, “All-Inorganic Perovskite Solar Cells”, J. Am. Chem. Soc. 138, 15829 (2016).
[17] C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung, A. J. Freeman, B. W. Wessels, M. G. Kanatzidis, “Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection”, Cryst. Growth Des. 7, 2722 (2013).
[18] D. Di, K. P. Musselman, G. Li, A. Sadhanala, Y. Ievskaya, Q. Song, Z. K. Tan, M. L. Lai, J. L. M. -Driscoll, N. C. Greenham, R. H. Friend, “Size-dependent photon emission from organometal halide perovskite nanocrystals embedded in an organic matrix”, J. Phys. Chem. Lett. 6, 446 (2015).
[19] M. Kulbak, D. Cahen, G. Hodes, “How important is the organic part of lead halide perovskite photovoltaic cells? efficient CsPbBr3 cells”, J. Phys. Chem. Lett. 6, 2452 (2015).
[20] F. Palazon, F. DiStasio, Q. A. Akkerman, R. Krahne, M. Prato, L. Manna, “Polymerfreefilms of inorganic halide perovskite nanocrystals as UV-to-white colorconversion layers in LEDs”, Chem. Mater. 28, 2902 (2016).
[21] H. Choi, J. Jeong, H. Kim, S. Kim, B. Walker, G. Kim, J. Kim, “Cesium-doped methylammonium lead iodide perovskite light absorber for hybrid solar cells”, Nano Energy 7, 80 (2014).
[22] Y. Rakita, N. Kedem, S. Gupta, A. Sadhanala, V. Kalchenko, M. L. Böhm, M. Kulbak, R. H. Friend, D. Cahen, G. Hodes, “Low-Temperature Solution-Grown CsPbBr3 Single Crystals and Their Characterization”, Cryst. Growth 10, 5717 (2016).
[23] M. Saliba, T. Matsui, K. Domanski, J. -Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J. -P. C. -Baena, W. R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, “Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance”, Science 354, 206 (2016).
[24] J. Song , J. Li , X. Li , L. Xu , Y. Dong , H. Zeng, “Quantum Dot Light-Emitting Diodes Based on Inorganic Perovskite Cesium Lead Halides (CsPbX3)”, Adv. Mater. 27, 7162 (2015).
[25] N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. Dewi, N. Mathews, P. Boix, H. Demir, S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes”, J.Phys.Chem.Lett 6, 4360 (2015).
[26] Y. Ling, Y. Tian, X. Wang, J. C. Wang, J. M. Knox, F. P. ‐Orive, Y. Du, L. Tan, K. Hanson, B. Ma, H. Gao, “Enhanced Optical and Electrical Properties of Polymer-Assisted All-Inorganic Perovskites for Light-Emitting Diodes”, Adv. Mater. 28, 8983 (2016).
[27] N. Yantara , S. Bhaumik , F. Yan , D. Sabba , H. A. Dewi , N. Mathews ,P. P. Boix , H. V. Demir , S. Mhaisalkar, “Inorganic Halide Perovskites for Efficient Light-Emitting Diodes”, J. Phys. Chem. Lett. 6, 4360 (2015).
[28] X. Zhang , B. Xu , J. Zhang , Y. Gao , Y. Zheng , K. Wang , X. W. Sun, “All‐Inorganic Perovskite Nanocrystals for High‐Efficiency Light Emitting Diodes: Dual‐Phase CsPbBr3‐CsPb2Br5 Composites”, Adv. Funct. Mater. 26, 4595 (2016).
[29] L. Zhang, X. Yang, Q. Jiang, P. Wang, Z. Yin, X. Zhang, H. Tan, Y.M. Yang, M. Wei, B. Sutherland, E. Sargent, J. You, “Ultra-bright and highly efficient inorganic based perovskite light-emitting diodes”, Nat. Commun. 8, 15640 (2017).
[30] H. Cho, C. Wolf, J. Kim, H. Yun, J. Bae, H. Kim, J. Heo, S. Ahn, T.-W. Lee, “Unravelling Additive-based Nanocrystal Pinning for High Efficiency Organic-Inorganic Halide Perovskite Light-Emitting Diodes”, Adv. Mater. 29, 1700579 (2017).
[31] W. Yang, J. Noh, N. Jeon, Y. Kim, S. Ryu, J. Seo, S. Seok, “High-performance photovoltaic perovskite layers fabricated through intramolecular exchange”, Science 348, 6240 (2015).
[32] A. Babayigit, D. Thanh, A. Ethirajan, J. Manca, M. Muller, H. Boyen, B.
[33] Conings, “Assessing the toxicity of Pb- and Sn-based perovskite solar cells inmodel organism Danio rerio”, Scientific Reports 6, 18721 (2016).
[34] A. Babayigit, A. Ethirajan, M. Muller, B. Conings, “Toxicity of organometal halide perovskite solar cells”, Nat. Mater. 15, 247 (2016).
[35] N. Noel, S. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A. Haghighirad, A. Sadhanala, G. Eperon, S. Pathak, M. Johnston, A. Petrozza, L. Herz, H. J. Snaith, “Lead-free organic–inorganic tin halide perovskitesfor photovoltaic applications”, Energy Environ. Sci. 7, 3061 (2014).
[36] H .Hu, B. Donga, W. Zhang, “Low-toxic metal halide perovskites: opportunities and future challenges”, J. Mater. Chem. A 5, 11436 (2017).
[37] F. Giustino, H. J. Snaith, “Toward Lead-Free Perovskite Solar Cells”, ACS Energy Lett. 1, 1233 (2016).
[38] F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang, M. G. Kanatzidis, “Solvent-Mediated Crystallization of CH3NH3SnI3 Films for Heterojunction Depleted Perovskite Solar Cells”, J. Am. Chem. Soc. 13, 11445 (2015).
[39] K. P. Marshall, M. Walker, R. I. Walton, R. A. Hatton, “Elucidating the role of the hole-extracting electrode on the stability and efficiency of inverted CsSnI3/C60 perovskite photovoltaics”, Nat.Energy 1, 16178 (2016).
[40] W. Liao, D. Zhao, Y. Yu, C. R. Grice, C. Wang, A. J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R. G. Xiong, Y. Yan, “Lead-Free Inverted Planar Formamidinium Tin Triiodide Perovskite Solar Cells Achieving Power Conversion Efficiencies up to 6.22%”, Adv. Mater. 28, 9333 (2016).
[41] Y. Liao, H. Liu, W. Zhou, D. Yang, Y. Shang, Z. Shi, B. Li, X. Jiang, L. Zhang, L. N. Quan, R. Q. -Bermudez, B. R. Sutherland, Q. Mi, E. H. Sargent, Z. Ning, “Highly Oriented Low-Dimensional Tin Halide Perovskites with Enhanced Stability and Photovoltaic Performance”, J. Am. Chem. Soc. 139, 6693 (2017).
[42] C. C. Stoumpos, L. Frazer, D. J. Clark, Y. -S. Kim, S. H. Rhim, A. J. Freeman, J. B. Ketterson, J. I. Jang, M. G. Kanatzidis, “Hybrid Germanium Iodide Perovskite Semiconductors: Active Lone Pairs, Structural Distortions, Direct and Indirect Energy Gaps, and Strong Nonlinear Optical Properties”, J. Am. Chem. Soc. 137, 6804 (2015).
[43] M. -G. Ju, J. Dai, L. Ma ,X. -C. Zeng, “Lead-Free Mixed Tin and Germanium Perovskites for Photovoltaic Application”, J. Am. Chem. Soc. 139, 8038 (2017).
[44] W. Ming, H. Shi, M. -H. Du, “Large dielectric constant, high acceptor density, and deep electron traps in perovskite solar cell material CsGeI3”, J. Mater. Chem. A 4, 13852 (2016).
[45] A. J. Lehner, D. H. Fabini, H. A. Evans, C. -A. Hébert, S. R. Smock, J. Hu, H. Wang, J. W. Zwanziger, M. L. Chabinyc, R. Seshadri, “Crystal and Electronic Structures of Complex Bismuth Iodides A3Bi2I9(A = K, Rb, Cs) Related to Perovskite: Aiding the Rational Design of Photovoltaics”, Chem. Mater. 27, 7137 (2015).
[46] B. W. Park, B. Philippe, X. L. Zhang, H. Rensmo, G. Boschloo, E. M. J. Johansson, “Bismuth Based Hybrid Perovskites A3Bi2I9 (A: Methylammonium or Cesium) for Solar Cell Application.”, Adv.Mater. 27, 6806 (2015).
[47] C. Ran, Z. Wu, J. Xi, F. Yuan, H. Dong, T. Lei, X. He, X. Hou, “Construction of Compact Methylammonium Bismuth Iodide Film Promoting Lead-Free Inverted Planar Heterojunction Organohalide Solar Cells with Open-Circuit Voltage over 0.8 V.”, J. Phys. Chem. 8, 394 (2017).
[48] M. Vigneshwaran, T. Ohta, S. Iikubo, G. Kapil, T. S. Ripolles, Y. Ogomi, T. Ma, S. S. Pandey, Q. Shen, T. Toyoda, K. Yoshin, T. Minemoto, S. Hayase, “Facile Synthesis and Characterization of Sulfur Doped Low Bandgap Bismuth Based Perovskites by Soluble Precursor Route”, Chem. Mater. 28, 6436 (2016).
[49] B. Saparov, F. Hong, J. Sun, H. Duan, W. Meng, S. Cameron, I. Hill, Y. Yan, B. Mitzi, “Thin-Film Preparation and Characterization of Cs3Sb2I9: A Lead-Free Layered Perovskite Semiconductor”, Chem. Mater. 27, 5622 (2015).
[50] P. Karuppuswamy, K. M. Boopathic, A. Mohapatra, H. -C. Chen, K. -T. Wong, P. -C. Wanga, C. -W. Chu, “Role of a hydrophobic scaffold in controlling the crystallization of methylammonium antimony iodide for efficient lead-free perovskite solar cells”, Nano Energy 45, 330 (2018).
[51] F. Jiang, D. Yang, Y. Jiang, T. Liu, X. Zhao, Y. Ming, B. Luo, F. Qin, J. Fan, H. Han, L. Zhang, Y. Zhou, “Chlorine-Incorporation-Induced Formation of the Layered Phase for Antimony-Based Lead-Free Perovskite Solar Cells”, J. Am. Chem. Soc. 140, 1019 (2018).
[52] A. Singh, K. M. Boopathi, A. Mohapatra, Y. -F. Chen, G. Li, C. -W. Chu, “Photovoltaic Performance of Vapor-Assisted Solution-Processed Layer Polymorph of Cs3Sb2I9”, ACS Appl. Mater. Interfaces 10, 2566 (2018).
[53] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang, H. Song, “High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots”, J. Mater. Chem. C 5, 4565 (2017).
[54] J. Rivnay, S. Inal, B. A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D. M. Delongchamp, G. G. Malliaras, “Structural control of mixed ionic and electronic transport in conducting polymers”, Nat. Commun. 7, 11287 (2016).
[55] M. Sun, Y. Guan, B. Liu, S. Chen, Y. Zhang, H. Cao, L. Xie, Y. Qian, W. Huang, “Spirofluorene-Based Blue Phosphorescent Organic Light-Emitting Diode with Improved Efficiency Using Co-Host Structure”, Gen. Chem. 1, 3 (2015).
[56] S. J. Dhoble, K. N. Shinde, H. C. Swart, K. Park (2012). Phosphate Phosphors for Solid-State Lighting. (1st ed.). Berlin Heidelberg:Springer-Verlag
[57] S. E. Dann, Reactions and Characterization of SOLIDS. Royal Society of Chemistry, USA (2002).
[58] D. A. Skoog, F. J. Holler, S. R. Crouch, Principles of Instrumental Analysis. Sixth Edition, Thomson Brooks/Cole, USA (2007).
[59] X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng, J. Huang, “Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations”, Nat. Energy 2, 17102 (2017).
[60] T. -F. Guo, “Markedly enhance the performance of perovskite-based light-emitting diodes under the low current regime”, unpoblished result (2018).
校內:2023-08-07公開