| 研究生: |
薛詠心 Hsueh, Yung-Hsin |
|---|---|
| 論文名稱: |
應用多介質模式評估台灣中部重金屬空氣污染區域之蔬菜攝食風險 Application of multiple media pathway in risk assessments of consuming vegetable cultivated in central Taiwan with air metal pollution |
| 指導教授: |
陳秀玲
Chen, Hsiu-Ling |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 食品安全衛生暨風險管理研究所 Department of Food Safety / Hygiene and Risk Management |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 104 |
| 中文關鍵詞: | 多介質模式 、空氣污染 、健康風險評估 、敏感性分析 、不確定性 |
| 外文關鍵詞: | multiple media pathway, air pollution, health risk assessment, sensitivity analysis, uncertainty |
| 相關次數: | 點閱:125 下載:3 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
工業排放廢氣中可能含有重金屬污染,如:銅、鋅、鎘、鉛、鎳、鉻、汞以及砷等。這些微粒會隨著大氣擴散、沉降,進入植物體,人類經由攝食而健康受影響。過去對於重金屬污染土壤、農作物的狀況調查、檢驗等皆需耗費大量時間、人力及經費。此外,民眾可能因攝食這些受污染之農產品而暴露了本可避免之風險。
1992年後多介質模式研究興起,藉由搭配污染物濃度與氣象等資料,推測污染物經由環境介質,如:空氣、土壤、水等,進入作物之濃度變化,並將推估結果應用於計算人體暴露健康風險。若能夠證實多介質模式推估結果與實際檢驗結果相近,則可考慮以模擬方式取代現行樣品檢測方法,以降低風險評估成本並即時取得風險。本研究參照美國加州環境保護局(California Environmental Protection Agency, CalEPA)在2003年公告、2015年更新之空氣中有毒物質熱點計畫風險評估指引(Air Toxics Hot Spots Program Risk Assessment Guidelines)之多介質模式,搭配台灣本地參數進行部分調整,模擬重金屬由空氣、土壤進入蔬菜中導致之人體暴露健康風險。本研究以中台灣的龍井與后里兩地為研究區域,分成空氣模擬組、土壤模擬組以及蔬菜實測組三組分別進行風險討論。
攝食致癌風險以蔬菜實測組之結果看來,在后里和龍井地區都大於10^-4而需要關注致癌風險。而其中最主要貢獻致癌風險的金屬種類為砷。攝食非致癌風險以蔬菜實測組之結果來看,在后里地區大於1、在龍井地區略低於1,其中主要貢獻非致癌風險的金屬種類為砷,其次為汞,第三為鉛,故須關注此兩地區的蔬菜重金屬濃度問題,尤其應多針對砷、汞、鉛進行排放管制。空氣模擬組所得之非致癌風險與蔬菜實測組相差過遠,故僅適合用以觀察空氣污染趨勢,但不適合取代蔬菜實測方法。鉛、鎳、鉻、汞和砷的攝食非致癌風險與鉛的攝食致癌風險在土壤模擬組和蔬菜實測組間的差異均在10倍以內,故可以藉土壤模擬組的方式對此五種金屬進行蔬菜中重金屬污染狀況之監控,但最好搭配其他污染源排放情形,並配合當地蔬菜的定期抽驗。銅和鋅的風險則因為根部吸收因子的影響可能有過於高估的問題,故不適合用於取代實測方法;鎘則因為在土壤中濃度過低,幾乎檢測不到,所以也無法使用模擬取代實測。
風險結果的敏感度分析結果顯示,在空氣模擬組主要對風險結果造成影響的因子為攝食量和沉降濃度,敏感度約介於42-62%;土壤模擬組的風險最主要由攝食量影響,敏感度大於80%,其次為土壤中重金屬濃度,其中敏感度較高的金屬種類為銅和鋅,而體重之敏感度<3%,因此對風險影響較小;蔬菜實測組之敏感度為攝食量>蔬菜中重金屬濃度>體重,其中敏感度較高的金屬為鉛、汞和砷,故最主要影響蔬菜實測組之風險之因子為攝食量和蔬菜中鉛、汞和砷之濃度。根據敏感度分析結果,蔬菜攝食量為影響風險之主要因子,因此對於有局部金屬污染源之區域應強化飲食攝食管理,避免完全食用區域性農作物,盡量分散飲食來源以降低暴露風險。
Industrial emissions may contain heavy metal particles and the pollutants will deposit into the vegetation, affecting the residents' health via ingestion. This study refers to the Air Toxics Hot Spots Program Risk Assessment Guidelines, which was announced by the California Environmental Protection Agency, to build the multiple pathway model and adjust some parameters taken from Taiwan, to estimate the concentration of heavy metals in vegetable and further to calculate the health risks. The discussion of consuming risk in metals was done in the air simulation group (ASG), the soil simulation group (SSG) and the vegetable measurement group (VMG) in Houli and Longjing areas in central Taiwan. In the VMG, the carcinogenic and non-carcinogenic ingestion risk in Houli and Longjing areas require attention. Arsenic is the highest contribution to the carcinogenic risk. The metals highest contribution for the non-carcinogenic risk are arsenic, mercury, and lead. Air simulation is not suitable for replacing the vegetable measurement method. The replacement of the vegetable measurement by soil simulation seems to be workable, but it's still recommended to cooperate with the emission of other pollution source and the regular inspection of local vegetables. Copper, zinc, and cadmium are not suitable for using simulation to replace measurement. For areas with local metal pollution sources, it should enhance the consumption management to avoid consuming local crops only and dispersing the dietary source to reduce the exposure risk from consuming the locally cultivated vegetables.
Adams SV, Passarelli MN, Newcomb PA. 2012. Cadmium exposure and cancer mortality in the third national health and nutrition examination survey cohort. Occup Environ Med 69:153-156.
Alloway BJ. 2013. Sources of heavy metals and metalloids in soils. In: Heavy metals in soils: Trace metals and metalloids in soils and their bioavailability, (Alloway BJ, ed). Dordrecht:Springer Netherlands, 11-50.
Bernhoft RA. 2013. Cadmium toxicity and treatment. Sci World J:7.
Bourliva A, Kantiranis N, Papadopoulou L, Aidona E, Christophoridis C, Kollias P, et al. 2018. Seasonal and spatial variations of magnetic susceptibility and potentially toxic elements (ptes) in road dusts of thessaloniki city, greece: A one-year monitoring period. Sci Total Environ 639:417-427.
CalEPA. 2003. Air toxics hot spots program: Risk assessment guidelines.
CalEPA. 2015. Air toxics hot spots program: Risk assessment guidelines.
Carpenter WE, Lam D, Toney GM, Weintraub NL, Qin ZY. 2013. Zinc, copper, and blood pressure: Human population studies. Med Sci Monitor 19:1-8.
Cheng YY, Chang YT, Cheng HL, Shen KH, Sung JM, Guo HR. 2018. Associations between arsenic in drinking water and occurrence of end-stage renal disease with modifications by comorbidities: A nationwide population-based study in taiwan. Sci Total Environ 626:581-591.
Chung SWC, Lam CH, Chan BTP. 2014. Total and inorganic arsenic in foods of the first hong kong total diet study. Food Addit Contam Part A-Chem 31:650-657.
Cobanoglu U, Demir H, Sayir F, Duran M, Mergan D. 2010. Some mineral, trace element and heavy metal concentrations in lung cancer. Asian Pac J Cancer Prev 11:1383-1388.
Coulibaly L, Labib ME, Hazen R. 2001. Comparative study between caltox and soil screening levels modeling approaches. Soil Sediment Contam 10:285-300.
Duan JC, Tan JH. 2013. Atmospheric heavy metals and arsenic in china: Situation, sources and control policies. Atmos Environ 74:93-101.
Gaetke LM, Chow-Johnson HS, Chow CK. 2014. Copper: Toxicological relevance and mechanisms. Arch Toxicol 88:1929-1938.
Genchi G, Sinicropi MS, Carocci A, Lauria G, Catalano A. 2017. Mercury exposure and heart diseases. Int J Environ Res Public Health 14:13.
Grandjean P, Satoh H, Murata K, Eto K. 2010. Adverse effects of methyl-mercury: Environmental health research implications. Environ Health Perspect 118:1137-1145.
Harmanescu M, Alda LM, Bordean DM, Gogoasa I, Gergen I. 2011. Heavy metals health risk assessment for population via consumption of vegetables grown in old mining area; a case study: Banat county, romania. Chem Cent J 5:10.
Hirshon JM, Shardell M, Alles S, Powell JL, Squibb K, Ondov J, et al. 2008. Elevated ambient air zinc increases pediatric asthma morbidity. Environ Health Perspect 116:826-831.
Houston MC. 2011. Role of mercury toxicity in hypertension, cardiovascular disease, and stroke. J Clin Hypertens 13:621-627.
Huang HH, Huang JY, Lung CC, Wu CL, Ho CC, Sun YH, et al. 2013. Cell-type specificity of lung cancer associated with low-dose soil heavy metal contamination in taiwan: An ecological study. BMC Public Health 13:12.
Huff J, Lunn RM, Waalkes MP, Tomatis L, Infante PF. 2007. Cadmium-induced cancers in animals and in humans. Int J Occup Environ Health 13:202-212.
IPCS. 2008. Uncertainty and data quality in exposure assessment. Part 1: Guidance document on characterizing and communicating uncertainty in exposure assessment.
Kacholi DS, Sahu M. 2018. Levels and health risk assessment of heavy metals in soil, water, and vegetables of dar es salaam, tanzania. J Chem:9.
Kettler S, Kennedy M, McNamara C, Oberdorfer R, O'Mahony C, Schnabel J, et al. 2015. Assessing and reporting uncertainties in dietary exposure analysis mapping of uncertainties in a tiered approach. Food Chem Toxicol 82:79-95.
Kleffner I, Eichler S, Ruck T, Schungel L, Pfeuffer S, Polzer P, et al. 2017. An enigmatic case of acute mercury poisoning: Clinical, immunological findings and platelet function. Front Neurol 8:5.
Kunimasa K, Arita M, Tachibana H, Tsubouchi K, Konishi S, Korogi Y, et al. 2011. Chemical pneumonitis and acute lung injury caused by inhalation of nickel fumes. Intern Med 50:2035-2038.
Latvala S, Hedberg J, Di Bucchianico S, Moller L, Wallinder IO, Elihn K, et al. 2016. Nickel release, ros generation and toxicity of ni and nio micro- and nanoparticles. PLoS One 11:20.
Lee CP, Lee YH, Lian IB, Su CC. 2016. Increased prevalence of esophageal cancer in areas with high levels of nickel in farm soils. J Cancer 7:1724-1730.
Li T, Wan Y, Ben YJ, Fan SR, Hu JY. 2017. Relative importance of different exposure routes of heavy metals for humans living near a municipal solid waste incinerator. Environ Pollut 226:385-393.
Liberda EN, Cuevas AK, Gillespie PA, Grunig G, Qu QS, Chen LC. 2010. Exposure to inhaled nickel nanoparticles causes a reduction in number and function of bone marrow endothelial progenitor cells. Inhal Toxicol 22:95-99.
Linos A, Petralias A, Christophi CA, Christoforidou E, Kouroutou P, Stoltidis M, et al. 2011. Oral ingestion of hexavalent chromium through drinking water and cancer mortality in an industrial area of greece - an ecological study. Environ Health 10:8.
Liu XM, Song QJ, Tang Y, Li WL, Xu JM, Wu JJ, et al. 2013. Human health risk assessment of heavy metals in soil-vegetable system: A multi-medium analysis. Sci Total Environ 463:530-540.
Lu XW, Wang LJ, Li LY, Lei K, Huang L, Kang D. 2010. Multivariate statistical analysis of heavy metals in street dust of baoji, nw china. J Hazard Mater 173:744-749.
Maddalena RL, McKone TE, Layton DW, Hsieh DPH. 1995. Comparison of multimedia transport and transformation models - regional fugacity model vs caltox. Chemosphere 30:869-889.
Maywald M, Wessels I, Rink L. 2017. Zinc signals and immunity. Int J Mol Sci 18:34.
Munoz O, Diaz OP, Leyton I, Nunez N, Devesa V, Suner MA, et al. 2002. Vegetables collected in the cultivated andean area of northern chile: Total and inorganic arsenic contents in raw vegetables. J Agric Food Chem 50:642-647.
Murakami M, Hirano T. 2008. Intracellular zinc homeostasis and zinc signaling. Cancer Sci 99:1515-1522.
Pan XD, Wu PG, Jiang XG. 2016. Levels and potential health risk of heavy metals in marketed vegetables in zhejiang, china. Sci Rep 6:7.
Permenter MG, Lewis JA, Jackson DA. 2011. Exposure to nickel, chromium, or cadmium causes distinct changes in the gene expression patterns of a rat liver derived cell line. PLoS One 6:11.
Ramirez-Andreotta MD, Brusseau ML, Beamer P, Maier RM. 2013. Home gardening near a mining site in an arsenic-endemic region of arizona: Assessing arsenic exposure dose and risk via ingestion of home garden vegetables, soils, and water. Sci Total Environ 454:373-382.
Roy M, McDonald LM. 2015. Metal uptake in plants and health risk assessments in metal-contaminated smelter soils. Land Degrad Dev 26:785-792.
Schneider BC, Constant SL, Patierno SR, Jurjus RA, Ceryak SM. 2012. Exposure to particulate hexavalent chromium exacerbates allergic asthma pathology. Toxicol Appl Pharmacol 259:38-44.
Sharma A, Katnoria JK, Nagpal AK. 2016. Heavy metals in vegetables: Screening health risks involved in cultivation along wastewater drain and irrigating with wastewater. SpringerPlus 5:16.
Sharma RK, Agrawal M, Marshall FM. 2008. Heavy metal (cu, zn, cd and pb) contamination of vegetables in urban india: A case study in varanasi. Environ Pollut 154:254-263.
Su CC, Lin YY, Chang TK, Chiang CT, Chung JA, Hsu YY, et al. 2010. Incidence of oral cancer in relation to nickel and arsenic concentrations in farm soils of patients' residential areas in taiwan. BMC Public Health 10:10.
Wang CH, Hsiao CK, Chen CL, Hsu LI, Chiou HY, Chen SY, et al. 2007. A review of the epidemiologic literature on the role of environmental arsenic exposure and cardiovascular diseases. Toxicol Appl Pharmacol 222:315-326.
Welling R, Beaumont JJ, Petersen SJ, Alexeeff GV, Steinmaus C. 2015. Chromium vi and stomach cancer: A meta-analysis of the current epidemiological evidence. Occup Environ Med 72:151-159.
Xia W, Hu J, Zhang B, Li YY, Wise JP, Bassig BA, et al. 2016. A case-control study of maternal exposure to chromium and infant low birth weight in china. Chemosphere 144:1484-1489.
Xie WS, Peng C, Wang HT, Chen WP. 2017. Health risk assessment of trace metals in various environmental media, crops and human hair from a mining affected area. Int J Environ Res Public Health 14:13.
Yu HS, Lee CH, Chen GS. 2002. Peripheral vascular diseases resulting from chronic arsenical poisoning. J Dermatol 29:123-130.
Yuk JS, Shin JS, Shin JY, Oh E, Kim H, Park WI. 2015. Nickel allergy is a risk factor for endometriosis: An 11-year population-based nested case-control study. PLoS One 10:8.
Zeller I, Knoflach M, Seubert A, Kreutmayer SB, Stelzmuller ME, Wallnoefer E, et al. 2010. Lead contributes to arterial intimal hyperplasia through nuclear factor erythroid 2-related factor-mediated endothelial interleukin 8 synthesis and subsequent invasion of smooth muscle cells. Arterioscler Thromb Vasc Biol 30:1733-U1145.
Zhang JB, Cai TJ, Zhao F, Yao T, Chen YM, Liu XQ, et al. 2012. The role of alpha-synuclein and tau hyperphosphorylation-mediated autophagy and apoptosis in lead-induced learning and memory injury. Int J Biol Sci 8:935-944.
Zhou H, Yang WT, Zhou X, Liu L, Gu JF, Wang WL, et al. 2016. Accumulation of heavy metals in vegetable species planted in contaminated soils and the health risk assessment. Int J Environ Res Public Health 13:12.
Zhou Z, Lu YH, Pi HF, Gao P, Li M, Zhang L, et al. 2016. Cadmium exposure is associated with the prevalence of dyslipidemia. Cell Physiol Biochem 40:633-643.
Zota AR, Schaider LA, Ettinger AS, Wright RO, Shine JP, Spengler JD. 2011. Metal sources and exposures in the homes of young children living near a mining-impacted superfund site. J Expo Sci Environ Epidemiol 21:495-505.
吳正宗 王. 2012. 肥培資材重金屬含量調查. 興大農業:環境、農業資材與農糧食品中之重金屬 82.
李芷儀. 2009. 以植生復育技術處理受重金屬銅、鉻與鎳污染土壤之研究(碩士論文).
卓恆毅. 2013. 以美國環保署多介質傳輸模式mepas評估長期暴露之健康風險:以中部科學園區臺中基地氫氟酸為例(碩士論文).
空保處. 2018. 環境有毒空氣污染物排放調查、監測與管制策略研擬計畫.
侯裕文. 2001. 應用fugacity模式簡化風險評估之可行性研究─以石化工業區為例(碩士論文).
翁震炘. 2006. 農作物重金屬污染監測與管制措施. 行政院農業委員會:農政與農情 169.
張淑貞. 2016. 全國污染農地總體檢 桃園、彰化重金屬毒害最深. 環境資訊中心.
郭鴻裕 劉, 江志峰. 2010. 作物(水稻)吸收土壤重金屬鎘機制與農產品安全之影響. 農業試驗所技術服務 83:12-14.
陳盈伊. 2010. 土壤中重金屬在植生復育過程中之濃度變化及型態轉換(碩士論文).
葉迺群. 2002. 評估跨介質模式caltox應用於污染場址達到整治目標之適用性─以某氯乙烯實廠為例(碩士論文).
臺中市政府主計處. 2017. 臺中市統計資料庫.
臺中市環保局. 2019. 106年臺中市后里區、西屯區、大雅區及港區空氣污染物健康風險-環境污染調查計畫.
劉勇志. 2008. 食用植物對土壤中重金屬之累積吸附研究(碩士論文). 朝陽科技大學.
衛生福利部食品藥物管理署. 2008. 台灣地區市售蔬菜類重金屬含量背景資料之建立. 藥物食品檢驗局調查研究年報 26.
環保署. 2010. 健康風險評估技術規範.
羅良慧. 1997. 應用地理資訊系統於土壤鎘污染危害評估方法之研究(碩士論文). 國立中興大學.
羅明德. 2006. 利用傳輸模式推論焚化廠環境介質dioxin流布(碩士論文).