簡易檢索 / 詳目顯示

研究生: 陳俊廷
Chen, Jun-Ting
論文名稱: 離岸風機單樁基礎支撐結構受動態載重之反應評估
Response Assessment of Supporting Structure for Offshore Wind Turbine on Monopile Foundation Subjected to Dynamic Loads
指導教授: 胡宣德
Hu, Hsuan-Teh
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 83
中文關鍵詞: 離岸風機單樁基礎動態載重拉格朗日方程式
外文關鍵詞: dynamic load, p-y curve, Winkler model, natural frequency
相關次數: 點閱:86下載:8
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前全世界僅少數的海上風力發電場坐落在地震發生區。海上風力發電機組的支撐結構受震反應評估是很重要的初步設計階段,包含認證和預警安全系統的技術發展
    。海上風力發電機組支撐結構的動態特性不僅取決於材料的性能和支撐結構的尺寸,更需考慮結構 - 土壤互制之影響。在目前運轉中的海上風電場大多採用單樁基礎的設計。本文應用拉格朗日能量方法(Lagrange energy method)評估離岸風力發電機支撐結構的動態特性和受震反應。支撐結構的反應受加載頻率和動態土壤阻尼之影響甚巨。本文考慮結構與土壤互制以Winkler土壤模型為基礎,並修正動態土壤性質,將其應用於風機支撐結構受動態簡諧外力加載之分析模型。觀察加載頻率的變化,找出靜態土壤性質與動態土壤性質的適用範圍。目的在於使用動態簡諧外力的反應來模擬地震力之影響。藉此評估對離岸風機結構受地震作用之反應。

    The main purpose of this study is to analyze the dynamic response of offshore wind turbines under dynamic loads. In order to estimate the shutdown standards, we use the results of the study and set the limit state of the wind turbines during the earthquake. In this paper, we use the p-y curve method and Winkler model for analysis. It can be obtained from the conclusion of the analysis when the load is low frequency. You can use the static soil stiffness. When the frequency of the load is high, we must use the dynamic soil stiffness. Using existing natural vibration frequency of fast computing model to adjust the rotation stiffness., using the model of this paper are expected to achieve rapid calculation of the structure of the natural vibration frequency.

    摘要 I Abstract II 致謝 VII 內文目錄 VIII 表目錄 X 圖目錄 XI 符號 XIV 第壹章、緒論 1 第1.1節 研究動機與目的 1 第1.2節 本文內容 4 第1.3節 文獻回顧 5 第貳章、動態分析模型的建立 7 第2.1節 各種離岸風機基礎型式 7 第2.2節 系統動態分析方法 10 第2.3節 土壤結構互制作用 15 第2.4節 土壤阻尼 31 第2.5節 剛性樁與柔性樁 33 第參章、分析模型建立 35 第3.1節 工址土壤性質 35 第3.2節 分析之風機型號 41 第3.3節 模型參數設定 43 第 3.4節 數學模型建立 44 第肆章、結果與分析 55 第 4.1 節 風機受載變位 56 第 4.2 節 風機受載自然振動頻率 72 第 4.3節 風機受載反應極值評估 75 第伍章、結論 76 第陸章、未來研究展望 79 參考文獻 80

     Ashour, M., Ardalan, H. (2012), “p-y curve and lateral response of piles in fully liquefied sands,” Canadian Geotechnical Journal, 49 (6) pp. 633-650.
     Ashour M.,and Norris,G. (1998), “Lateral loading of a pile in layered soil using the strain wedge model ,” Journal of Geotechnical and Geoenvironmental Engineering, 124 (4) pp.303-315.
     Ashour,M.,and Norris,G. (2000), “Modeling lateral soil-pile response based on soil-pile interaction , ” Journal of Geotechnical and Geoenvironmental Engineering, 126 (5) pp.420-428.
     Ashour,M., Norris,G.,and Pilling,P. (1998), “Lateral loading of a pile in layered soil using the strain wedge model, ” Journal of Geotechnical and Geoenvironmental Engineerong, 124 (4) pp.303-315.
     Bijker, E. W., and De Bruyn, C. A. (1988). Erosion around a pile due to current and breaking waves. Coastal Engineering Proceedings, 1 (21) pp.1368-1381.
     Borms, B. (1964). Lateral resistance of piles in cohesionless soils. Journal of the Soil Mechanics and foundation Division. ASCE, 90(3), 576-587.
     Brennan, A. J., Thusyanthan, N. I., Madabhushi, S. P. G. ( 2005), “Evaluation of shear modulus and damping in dynamic centrifuge tests, ” Journal of Geotechnical and Geoenvironmental Engineering, 131 (12) pp.1488-1497.
     Camilo Phillips , Youssef M.A. ,Hashash (2009), “Damping formulation for nonlinear 1D site response analyses,” Soil Dynamics and Earthquake Engineering, 29 (7) pp. 1143–1158.
     Castelli, F., Maugeri, M.(2009), “Simplified Approach for the Seismic Response of a Pile Foundation,” Journal of Geotechnical and Geoenvironmental Engineering, 135 (10) pp.1440-1451
     Darendeli MB. (2001) Development of a new family of normalized modulus reduction and material damping curves, Published Doctoral Dissertation, Civil Engineering, University of Texas at Austin.
     El Naggar MH,Bentley K. (2000), “Dynamic analysis for laterally loaded piles and dynamic p-y curve, ” Canadian Geotechnical Journal, 37 (6) pp.1166-1183.
     El Naggar MH,Bentley K. ( 1996), “Nonlinear analysis for dynamic lateral pile response,” Soil Dynamics and Earthquake Engineering, 15 (4) pp. 233-244.
     Global Wind Speed Rankings:http://www.4coffshore.com/windfarms/windspeeds.a- spx,2014
     Hudson M, Idriss IM, Beikae M. “ QUAD4 M-A computer program to evaluate the seismic response of soil structures using finite element procedures and incorporating a compliant base,” In: Center for Geotechnical Modeling, Department of Civil and Environmental Engineering, University of California, Davis, CA., Davis, CA, 1994.
     Kim, Y., Jeong, S., Won, J. (2009), “Effect of Lateral Rigidity of Offshore Piles Using Proposed p-y Curves in Marine Clay,” Marine Georesources & Geotechnology, 27 (1) pp. 53-77.
     Nogami, T., Otani, J., Konagai, K., Chen, H. L. (1992), “Nonlinear soil-pile interaction-model for dynamic lateral motion,” Journal of Geotechnical Engineering-Asce, 118 (1) pp.89-106.
     Matlock, H. (1970). Correlations for design of laterally loaded piles in soft clay. Offshore Technology in Civil Engineering’s Hall of Fame Papers from the Early Years, pp.77-94.
     Poulos, H. G. and Hull, T. S. (1989). The role of analytical geomechanics in foundation engineering. In Foundation Engineering:Current Principles and Practices, pp. 1578-1606.
     Matasovic, N., Vucetic, M. (1993), “Cyclic characterization of liquefiable sands,” Journal of Geotechnical Engineering, 119 (11) pp.1805-1822.
     Makris, N., Gazetas, G. (1992), “Dynamic pile soil pile interaction.2.lateral and seismic response,” Earthquake Engineering & Structural Dynamics, 21 (2) pp.145-162.
     Mostafa, Y. E., El Naggar, M. H. (2004), “Response of fixed offshore platforms to wave and current loading including soil-structure interaction,” Soil Dynamics and Earthquake Engineering, 24 (4) pp.357-368.
     O,Neill, M.W. and Murchison,J.M. (1983), “An Evaluation of P~Y in Sands,”,Research Report No.GT-DF02-83,Department of Civil Engineering, University of Houston.
     Park D, Hashash YMA. (2004), “Soil damping formulation in nonlinear time domain site response analysis,” Journal of Earthquake Engineering, 8 (2) pp.249–74.
     Rayleigh JWS, Lindsay RB. (1945), “The theory of sound”, New York: Dover Publications, 2 (1).
     Reese,L.C. and Welch,R.C. (1975), “Lateral Loading of Deep Foundation in Stiff Clay,” Journal of Geotechnical Engineering Division, Vol.101, Paper No. GT7, pp.633-649.
     Reese, L.C., Cox, W.R., and Koop, F.D. (1975), “Field Testing and Analysis of Laterally Loaded Piles in Stiff Clay,” Proceedings of the 7th Annual Offshore Technology Conference, Houston, Texas, Vol. 2, Paper No. OTC 2312, pp.672-690.
     Reese,L.C., Cox,W.R. and Koop,F.D. (1974), “Analysis of Laterally Load Piles in Sand”, Paper No.OTC 2080,Proceedings of the 5th Annual Offshore Technology Conference, Houston, Texas, pp473-485.
     Rovithis, E. N., Pitilakis, K. D., Mylonakis, G. E. (2009), “Seismic analysis of coupled soil-pile-structure systems leading to the definition of a pseudo-natural SSI frequency, ” Soil Dynamics and Earthquake Engineering, 29 (6) pp.1005-1015.
     Seed, H. B., Wong, R. T., Idriss, I. M., Tokimatsu, K. (1986), “Moduli and damping factors for dynamic analyses of cohesionless soils,” Journal of Geotechnical Engineering, 112 (11) pp.1016-1032.
     Winkler, E. (1867), “The Laws of Elasticity and Strength (in German),” H.Dominicu s, Prague, pp.182-184.
     Zaaijer, M. B. (2006), “Foundation modelling to assess dynamic behaviour of offshore wind turbines, ” Applied Ocean Research, 28 (1) pp.45-57.
     林郁庭(2013),「以離心模型模擬離岸風機單樁受反覆水平側推之p-y曲線」,國立中央大學土木工程研究所碩士論文
     林永盛(1996),基礎結構動力(上冊),文笙書局,(pp.19-98)
     吳俊寬(2011),「離岸風機海底基樁設計之研究」,國立臺灣大學工學院工程科學及海洋工程學系碩士論文
     郭玉樹、蘇峰堅、曾韋禎、林啓聖(2012),離岸風機大口徑單樁基礎支承結構之自然振動頻率快速計算法,第34屆海洋工程研討會論文集
     萬大土壤技術顧問有限公司(2012),「彰濱海域地質調查研究地質調查鑽探試驗分析工作」,財團法人國家實驗研究院台灣海洋科技研究中心,
     黎杰侖(2006),「沖刷樁基承受側向載重之變位分析」,國立成功大學土木工程研究所碩士論文
     蔡璧嬬(2007),「臺灣自由場強震站場址分類之進一步研究」,國立中央大學地質研究所碩士論文
     蘇峰堅、郭玉樹、曾韋禎、邱盛彥、吳坦融(2012),反覆載重作用對離岸風機支承結構自然振動頻率影響,台灣風能學術研討會論文集

    下載圖示 校內:2017-08-27公開
    校外:2017-08-27公開
    QR CODE