| 研究生: |
鄭凱中 cheng, kai-chung |
|---|---|
| 論文名稱: |
應用模糊基因演算法於營建企業之投資組合管理 Applications of Fuzzy-GA to Optimizing Financial Portfolio for the Construction Industry |
| 指導教授: |
馮重偉
Feng, Chung-Wei |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 投資組合管理 、基因演算法 、模糊理論 |
| 外文關鍵詞: | Genetic algorithms, Fuzzy theory, Portfolio manage |
| 相關次數: | 點閱:132 下載:14 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著營建企業多元化經營的發展,有效地運用資金已成為企業經營的重要策略,其中透過證券之投資組合管理,使資金的運用能降低風險提高報酬乃成為主要的經營課題。證券投資組合管理主要運用多元化投資原則,選擇相關性低的投資標的,分配各股比重決定此組合的效益以分散風險。
人工智慧應用於證券投資組合的研究中,以往都以基因演算法尋找最佳投資規則但缺乏語意程度的表達,而模糊推論(Fuzzy inference)則需要專家知識庫與經驗法則,但缺乏有系統的規則制定方法,因此有必要結合雙方的優點建立有效的投資模式。
本研究結合基因演算法與模糊理論,發展一套模糊基因最佳化投資系統(Optimize Portfolio Inference Engine,OPIE),並以此建立預測系統與組合最佳化模式,採用基因演算法最佳化模糊歸屬函以推論報酬率和風險,並搜尋報酬風險多目標的最佳化。
經由模式驗證可知預測漲跌的趨勢甚佳,可用來權衡選取投資組合,其報酬率亦優於基金和大盤表現,提供投資者高報酬低風險的投資選擇,以利營建企業多角化經營,此為本研究整合預測和最佳化的最大貢獻。
Upon the development of diversity industrial environment, the construction industry fund management has become an important strategy. The aim of the application is to reduce the risk and raise the return, it has become a main issue through out the portfolio securities. Portfolio securities use the diversification investment principle by choosing low correlation stock and assign the weights of each stock to determine the benefits of this folio in order to disperse the risk.
From the past, applying the artificial intelligence research portfolio has always been the best solution to calculate the best combination of the stock choices. Lack of language communication has also been known as a big issue. The fuzzy inference requires expert's knowledge and experiences, but systematic has always been the lacking issue. So it is necessary to combine the advantages of both systems to set up effective investment model. This study combine genetic algorithms and fuzzy theory to develop a Fuzzy-GA optimization invest system (Optimize Portfolio Inference Engine, OPIE), thus by establishing a stock predicting system it is possible to apply the system on the folio to calculate fuzzy membership functions. This will not only gives the best capital gain return but it also brings the investment to the lowest risks.
From the simulation, it is possible to predict the trends of the investments, thus by taking this advantage, best return and performance has become possible to achieve. Offering the investors the best solutions to invest will not only bring the industry good returns but it also gives the industry a chance to become a multiple and world wide industry.
英文部分:
1.Amit, R. and Livant, J. “Diversification Strategies, Business Cycle, and Economic Performance.” Strategic Management Journal, 9, pp. 99-110(1988).
2.Arslan, A. and Kaya, M. “Determination of fuzzy logic membership functions using genetic algorithms.” Fuzzy Sets and System, Vol. 118, pp. 297-306(2001).
3.Bauer, R. J. Genetic Algorithms and Investment Strategies. John Wiley & Sons. Inc, New York(1994).
4.Dong, W. M. and Wong, F. S. “Fuzzy weighted averages and implementation of the extension principle.” Fuzzy Sets and Systems, Vol. 21, No. 2, pp. 183- 199(1987).
5.Evans, J. and S. Archer, “Diversification and the Reduction of Dispersion: An Empirical Analysis.” Journal of Finance, Vol. 23, No. 5, pp. 761-767(1968).
6.Fama, E. F., “The Behavior of Stock Market Prices.” Journal of Business, Vol. 33, pp. 34-105 (1965).
7.Fisher, L. and J. H. Lorie., “Some Studies of Variability of Returns on Investments in common Stocks.” Journal of Business, Vol. 43, No.2, pp. 99-134(1970).
8.Feng, C. W., Liu, L., and Burns, S. A. ‘‘Using genetic algorithms to solve construction time-cost trade-off problems.’’ J. Comp. Civ. Engrg., ASCE, 11(3), pp. 184–189(1997).
9.Feng, C. W., Liu, L., and Burns, S. A. “Stochastic construction time-cost trade-off analysis.” J. Comp. Civ. Engrg., ASCE, 14(2), pp. 117-126(2000).
10.Goldberg, D. E. Genetic algorithms in search, optimization & machine learning, Addison-Wesley Publishing Co., Reading, Mass(1989).
11.Hussein Dourra, “Investment using technical analysis and fuzzy logic.” Fuzzy Sets and System, Vol. 127, pp. 221-240 (2002).
12.Markowitz, H. M., “Portfolio Selection.” Journal of Finance, Vol. 7, pp. 77-91(1952).
13.Michalewicz, Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer, New York (1996).
14.Mamdani, E. H. “Applications of fuzzy algorithms for control of simple dynamic plants.“ IEEE Proceedings, pp. 1585-1588(1974).
15.Ou, Jane A., and Penman, Stephen H., “Financial Statement Analysis and the Prediction of Stock Returns.” Journal of Accounting Economics, Vol. 11, pp. 295-329(1989).
16.Quaha, T.S., ”Improving returns on stock investment through neural network selection1.” Expert Systems with Applications Vol. 17 pp. 295–301(1999).
17.Rudd, A., “Optimal Selection of Passive Portfolio.” Financial Management, Spring, pp. 57-66(1980).
18.Shoaf J., Foster J.A., “The efficient set GA for stock portfolios.” 1998 IEEE World Congress on Computational Intelligence, The IEEE International Conference on Evolutionary Computation Proceedings, pp. 354 – 359(1998).
19.William Leigh A., Russell Purvis b, James M. Ragusa “Forecasting the NYSE composite index with technical analysis pattern recognizer, neural network, and genetic algorithms a case study in romantic decision support .“ Decision Support Systems, Vol. 32, pp. 361– 377(2002).
20.Wang, Y.-F., “Predicting stock price using fuzzy grey prediction system.” Expert Systems with Applications , Vol. 22, 1, pp. 33-38(2002).
21.Zadeh, L. A., “Fuzzy sets”, Information and Control , Vol. 8, pp. 338-353(1965).
22.Zadeh, L. A., “Fuzzy sets as a basis for a theory of possibility.” Fuzzy Sets and Systems, Vol. 1, pp. 3-28(1978).
中文部分:
1.王殷盛,財務預測資訊之市場效率性,國立臺灣大學會計學研究所碩士論文,民國92年
2.伍忠賢,實用投資學,華泰文化出版社,台北(1999)。
3.林政賢,台灣地區總體經濟指標對上市電子產業股價之關係研究,中興大學企業管理學研究所碩士論文,民國88年。
4.林耀暄,模糊理論和基因演算法於股市買賣點決策及資金比例配置之研究,國立中華大學資訊工程研究所碩士論文, 民國89年。
5.胡勝益,投資理財:理論/策略/實務,大社會文化出版社,台北(1998)。
6.紀桂銓,類神經網路對股市反轉點之學習與預測應用,交通大學資訊管理研究所碩士論文,民國82年。
7.侯佳利,組合編碼遺傳演算法於投資組合及資金分配之應用,國立中央大學資訊管理學系碩士論文,民國90年。
8.徐俊明,投資學:理論與實務,新陸書局,台北(1997)。
9.徐佩鈺,財務比率與股票型基金持股關聯性之實證研究,國立政治大學會計學研究所碩士論文,民國90年。
10.孫宗瀛,Fuzzy工學,全華科技圖書,台北(1992)。
11.黃惠君,公司上市前後盈餘操縱與上市後營運績效及盈餘操縱動機之關聯性研究, 國立台灣大學會計研究所未出版碩士論文,民國84年。
12.范揚明,模糊理論在股票投資決策上的應用,暨南大學資訊管理研究所碩士論文,民國90年。
13.陳松男,現代投資學,新陸書局,台北(1997)。
14.陳柏年,應用遺傳演算法於財務指標選股策略之探討,中央大學資訊管理碩士論文,民國89年。
15.陳怡伶,平均數-低偏動差模型之投資績效表現-與平均數- 變異數模型之比較,中原大學國際貿易學系碩士論文,民國91年。
16.陳家隆,運用統計方法與人工智慧技術建構整合投資策略,國立成功大學統計系碩士論文,民國91年。
17.陳泰康,使用智慧型基因演算法設計高效能的模糊系統,逢甲大學資訊工程系碩士論文,民國89年。
18.劉慧敏,多目標遺傳演算法於基本面選股策略之應用,國立中央大學資訊管理研究所碩士論文,民國90年。
19.謝俊權,台灣股市八大類股間之長期均衡趨勢分析─門檻共整合誤差修正模 型之運用,中國文化大學經濟學研究所碩士論文,民國91年。
20.蕭郁凱,遺傳演算法與股市資金分配策略應用上之研究,國立中央大學資訊管理研究所碩士論文,民國89年。
21.鄭雅如,動能策略與股票風格在台灣股市的實證研究,國立政治大學財務管理研究所碩士論文,民國90年。
22.錢善生,模糊理論與專家系統在台灣股市之應用,台灣大學資訊管理研究所碩士論文,民國84年。