簡易檢索 / 詳目顯示

研究生: 林晁瑋
Lin, Chao-Wei
論文名稱: 基於抽象任務函數之集中式與分散式人機互動控制系統
Centralized and Distributed Human-Swarm Control System By Abstracted Task Function
指導教授: 劉彥辰
Liu, Yen-Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 174
中文關鍵詞: 集中式與分散式人機互動系統抽象函數固定與時變訊號時間延遲人機互動系統實驗平台
外文關鍵詞: Human-swarm system, distributed control, abstracted task function, communication delays, human-swarm experiment
相關次數: 點閱:95下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文提出使用單一操控人員同時與群組機器人進行互動之控制系統架構,遠端群組機器人系統之位置、隊形、分散程度等,可以在本論文提出的系統下即時地調派與控制。本人機互動系統從抽象任務空間進行控制,使用特定的函數來表示群組機器人整體的行為,讓操作人員控制主機器人任務空間位置的同時,直接影響群組機器人整體的行為,使主機器人與受控機器人系統不會受限於機械結構相異性的問題。群組機器人從任務空間的操作而言,屬於一冗餘機器人系統,因此群組機器人系統可以利用冗餘的自由度設計次要任務,讓系統在執行主要任務的過程中,群組機器人可自主地透過多餘的自由度完成次要任務。由於,操作人員與群組機器人之間的訊號需經由網路通訊傳遞,時間延遲等不確定因素會影響到整體閉迴路控制系統之穩定性與性能。為了解決此問題,本研究將先前發展之人機互動系統,從固定時間延遲拓展到通訊端口存在時變時間延遲,並同時討論位置追蹤的性能。此外,主機器人透過群組機器人端回饋的訊號,使操作人員感受到群組機器人工作環境的情況,進一步輔助群組機器人任務的調整。
    當群組機器人數量上升時,前述集中式控制架構的中央控制器之通訊負擔與計算量會隨之提升,使得系統的反應時間變長,進而影響系統的表現。為了解決上述問題,本研究發展另一套分散式的人機互動系統。此提出之分散式人機互動系統,將通訊能力較好的機器人指定為可接收操作人員目標訊號的接收者,透過各機器人間全域參數與目標指令的估計器,讓群組移動機器人利用彼此間的通訊網路進行估計資訊的分享,進一步讓各機器人估測到整體的全域參數與操作人員的目標指令。此外,利用分散式群組機器人控制器與估測的數值,可使分散式人機互動系統在通訊端口存在固定時間延遲的情況下,達成與集中式控制架構相同的任務。本研究提出之集中式與分散式的人機互動系統,除了理論分析與數值模擬外,亦設計了一群組機器人人機互動系統實驗平台,並進行相關理論之實驗驗證。透過本研究設計的實驗平台與三種不同的任務情境,實際的驗證各系統在通訊端口存在固定或時變時間延遲的情況下,其真實的表現與效能。

    Enduring human intelligence with traditional multi-robot systems can significantly improve flexibility and maneuverability. However, kinematic dissimilarity between master robots, manipulated by human operators, and mobile robots, implementing tasks in remote environment is the most important issue in the study of human-swarm systems. In this thesis, centralized and distributed control frameworks for a human operator to remotely manipulate a group of mobile robots over unreliable communication network are proposed. By controlling the task abstraction of the multi-robot system to overcome the kinematic dissimilarity, the human user is able to control the movements of a group of mobile robots. In the centralized system, stability and tracking performance are guaranteed when the communication network is subjected to time-varying delays. The distributed control framework can be accomplished by assigning a portion of agents as the receiver(s) such that the entire group of mobile robots can be commanded by the human operator. The position tracking between master and swarm robots is guaranteed under constant time delay by using the estimated value. Both of the human-swarm systems and control algorithms are validated in this thesis via numerical simulation and experiments to demonstrate stability and performance.

    圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 第一章 緒論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.1 研究背景. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 1.2 研究動機與目的. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 1.3 論文架構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 第二章 集中式人機互動系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1 機器人動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.1 主機器人動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.1.2 受控機器人動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 抽象函數. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.2.1 主要任務函數介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 23 2.2.2 次要任務函數介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.3 固定時間延遲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.1 控制器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 2.3.2 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.4 時變時間延遲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 控制器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.2 穩定性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.3 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.5 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 第三章 分散式人機互動系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 系統架構與機器人動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1.1 機器人動態模型. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 3.2 控制器介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 分散式群組機器人控制器. . . . . . . . . . . . . . . . . . . . . . . 45 3.2.2 主機器人控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 3.3 穩定性分析. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.4 模擬結果. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 3.5 討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 第四章 實驗平台架設. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 4.1 主機器人:Omni Haptic Device . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.1 硬體介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 4.1.2 主機器人控制器程式流程. . . . . . . . . . . . . . . . . . . . . . . 67 4.2 受控機器人:E-puck Mobile Robot . . . . . . . . . . . . . . . . . . . . . . 68 4.2.1 硬體介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.2.2 受控機器人端控制程式流程. . . . . . . . . . . . . . . . . . . . . . 70 4.3 室內定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.1 硬體介紹. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72 4.3.2 程式流程. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 4.4 藍芽通訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 4.5 模擬網路通訊. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.5.1 固定時間延遲與程式模擬介紹. . . . . . . . . . . . . . . . . . . . . 77 4.5.2 時變時間延遲與程式模擬介紹. . . . . . . . . . . . . . . . . . . . . 78 第五章 實驗結果與討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.1 集中式人機互動系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.1 固定時間延遲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 5.1.2 時變時間延遲. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 5.2 分散式. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 5.3 結果討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5.3.1 固定時間延遲與時變時間延遲的結果比較. . . . . . . . . . . . . . 117 5.3.2 集中式與分散式系統的結果比較. . . . . . . . . . . . . . . . . . . 117 第六章 結論與展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.1 結論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120 6.2 未來展望. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123 附錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125 A. 硬體規格書. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 A-1. Omni Haptic Device . . . . . . . . . . . . . . . . . . . . . . . . . . . 126 A-2. E-puck . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 B. 實驗程式碼. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 B-1. 主機器人控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 B-2. 群組機器人控制器. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140 B-3. 移動機器人微處理器. . . . . . . . . . . . . . . . . . . . . . . . . . . 158 B-4. 室內定位系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159 B-5. 藍芽傳輸. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170 C. 符號表. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

    [1] R. M. Murray. Recent research in cooperative control of multivehicle systems. ASME Journal of Dynamic Systems, Measurement, and Control, 129(5):571-583, May. 2007.
    [2] R. Haghighi and C. C. Cheah. Multi-group coordination control for robot swarms. Automatica, 48(10):2526-2534, Oct. 2012.
    [3] P. Yang, R. A. Freeman, and K. M. Lynch. Multi-agent coordination by decentralized estimation and control. IEEE Transactions on Automatic Control, 53(11):2480-2496, Dec. 2008.
    [4] Lewis, M. A. Lewis, and K.-H. Tan. High precision formation control of mobile robots using virtual structures. Autonomous Robots, 4(4):387-403, Oct. 1997.
    [5] T.H.A. van den Broek, N. van de Wouw, and H. Nijmeijer. Formation control of unicycle mobile robots: a virtual structure approach. In Proceedings of the 48th IEEE Conference on Decision and Control, pages 8328-8333, Dec. 2009.
    [6] L. Sabattini, C. Secchi, and C. Fantuzzi. Closed-curve path tracking for decentralized systems of multiple mobile robots. Journal of Intelligent and Robotic Systems, 71(1):109-123, Jul. 2013.
    [7] Y. K. Hwang and N. Ahuja. A potential field approach to path planning. IEEE Transactions on Robotics and Automation, 8(1):23-32, Feb. 1992.
    [8] C. C. Cheah, S. P. Hou, and J. J. E. Slotine. Region-based shape control for a swarm of robots. Automatica, 45(10):2406-2411, Oct. 2009.
    [9] B. Jung and G. Sukhatme. A region-based approach for cooperative multi-target tracking in a structured environment. In 2002. IEEE/RSJ International Conference on Intelligent Robots and Systems, pages 2764-2769, Dec. 2002.
    [10] X. Li and J. Xiao. Robot formation control in leader-follower motion using direct lyapunov method. International Journal of Intelligent Control and Systems, 10(3):244-250, Sep. 2005.
    [11] T. Gustavi, D. V. Dimarogonas, M. Egerstedt, and X. Hu. Sufficient conditions for connectivity maintenance and rendezvous in leader-follower networks. Automatica, 46(1):133-139, Jan. 2010.
    [12] Chao-Wei Lin, Luis A. Sanchez-Porras, and Yen-Chen Liu. Hierarchical coordination for multi-robot systems with region-based tracking control. International Journal of Automation and Smart Technology, 5(1):6-17, Mar. 2015.
    [13] T. Balch and R. C. Arkin. Behavior-based formation control for multirobot teams. IEEE Transactions on Robotics and Automation, 14(6):926-939, Dec. 1998.
    [14] R. A. Brooks. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation, RA-2(1):14-23, Mar. 1986.
    [15] W. Ren. Multi-vehicle consensus with a time-varying reference state. Systems & Control Letters, 56(7-8):474-483, Jul. 2007.
    [16] R. Olfati-Saber, F. A. Fax, and R. M. Murray. Consensus and cooperation in networked multi-agent systems. Proceedings of the IEEE, 95(1):215-233, Jan. 2007.
    [17] J. P. Richard. Time-delay systems: an overview of some recent advances and open problems. Automatica, 39(10):1667-1694, Oct. 2003.
    [18] E. J. Rodriguez-Seda, J. J. Tory, C. A. Erignac, P. Murray, D. M. Sripanovic, and M. W. Spong. Bilateral teleoperation of multiple mobile agents: Coordination motion and collision avoidance. IEEE Transactions on Control Systems Technology, 18(4):984-992, Jul. 2010.
    [19] A. Franchi, C. Secchi, H. II Son, H. H. Bulthoff , and P.R. Giordano. Bilateral teleoperation of groups of mobile robots with time-varying topology. IEEE Transactions on Robotics, 28(5):1019-1033, Oct. 2012.
    [20] D. J. Lee, A. Franchi, H. II Son, C.-G Ha, H. H. Builthoff , and P. R. Giordano. Semiautonomous haptic teleoperation control architecture of multiple unmanned aerial vehicles. IEEE/ASME Transactions on Mechatronics, 18(4):1334-1345, Aug. 2013.
    [21] Y.-C. Liu. Task-space coordination control of bilateral human-swarm systems. Journal of the Franklin Institute, 352(1):331-331, Jan. 2015.
    [22] S. Islam, X. P. Liu, A. E. Saddik, L. Seneviratne, and J. Dias. Control schemes for passive teleoperation systems over wide area communication networks with time varying delay. International Journal of Automation and Computing, 11(1):100-108, Feb. 2014.
    [23] J. Yan, X.-Y. Luo, X. Yang, C.-C. Hua, and X.-P. Guan. Consensus of multislave bilateral teleoperation system with time-varying delays. Journal of Intelligent and Robotic Systems, 76(2):239-253, Nov. 2014.
    [24] N. Chopra, M. W. Spong, S. Hirche, and M. Buss. Bilateral teleoperation over the internet: the time varying delay problem1. Urbana, 101:61801, 2003.
    [25] Robot Modeling and Control. M. W. Spong, S. Hutchinson, and M. Vidyasagar, New York: John Wiley & Sons, Inc., 2006.
    [26] D. M. Stipanovic, P. F. Hokayem, M. W. Spong, and D. D. Siljak. Cooperative avoidance control for multiagent systems. ASME Journal of Dynamic Systems, Measurement, and Control, 129(5):699-707, Apr. 2007.
    [27] Y.-C. Liu and N.Chopra. Controlled synchronization of heterogeneous robotic manipulators in the task space. IEEE Transactions on Robotics, 28(1):268-275, Feb. 2012.
    [28] P. Hsu, J. Hauser, and S. Sastry. Dynamic control of redundant manipulators. In 1988 American Control Conference, pages 2135-2139, Jun. 1988.
    [29] Y.-C. Liu and N. Chopra. Control of semi-autonomous teleoperation system with time delays. Automatica, 49(6):1553-1565, Jun. 2013.
    [30] Y.-C. Liu and N. Chopra. Control of robotic manipulators under input/output communication delays: Theory and experiments. IEEE Transactions on Robotics, 28(3):742-751, Jun. 2012.
    [31] Nonlinear Systems. H. K. Khalil, New Jersey: Prentice Hall, 2002.
    [32] Networking Humans, Robots, and Environments. M. Hwang, M. Elwin, P. Yang, R. Freeman, and K. M. Lynch," Experimental Validation of Multi-Agent Coordination by Decentralized Estimation Control", N. Y. Chong, Ed. Sharjah, U.A.E.:Bentham, 2011.
    [33] K. M. Lynch, I. B. Schwartz, P. Yang, and R. A. Freeman. Decentralized environmental modeling by mobile sensor networks. IEEE Transactions on Robotics, 24(3):710-724, Jun 2008.
    [34] Y. Peng, K. M. Lynch, and R. A. Freeman. Distributed estimation and control of swarm formation statistics. In 2006 American Control Conference, pages 749-755, Jun. 2006.
    [35] G. Oriolo, A. De Luca, and M. Vendittelli. Wmr control via dynamic feedback linearization: design, implementation, and experimental validation. IEEE Transactions on Control Systems Technology, 10(6):835-852, Nov. 2002.
    [36] C.-W. Lin, M.-H. Khong, and Y.-C. Liu. Experiments of human-in-the-loop coordination for multi-robot system with task abstraction. IEEE Transactions on Automation Science and Engineering, (in press).

    下載圖示 校內:2020-08-31公開
    校外:2020-08-31公開
    QR CODE