簡易檢索 / 詳目顯示

研究生: 蔡美慧
Tsai, Mei-Hui
論文名稱: 含磷酸根與磷酸化乙醇胺官能基的自我聚集性單分子層之合成、表面分析與血小板吸附之研究
Synthesis, Surface Characterization, and Platelet Adhesion Studies of Self-Assembled Monolayers (SAMs) with Phosphoric Acid and Phosphorylethanolamine Terminal Functionalities
指導教授: 林睿哲
Lin, Jui-Che
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 中文
論文頁數: 144
中文關鍵詞: 自我聚集單分子層、血液相容性、化學分析電子光譜儀(ESCA)、親疏水性質
外文關鍵詞: electron spectroscopy of chemical analysis, blood compatibility, Self-assembled monolayers, wettability
相關次數: 點閱:97下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
      生醫材料的表面性質對生物相容性的研究是非常重要的,而長鏈的烷基硫醇可藉由化學鍵結吸附在金的表面形成緻密排列且具有方向性的自我聚集單分子層,此恰好提供一多樣末端結構與表面性質以作為材料表面與血液相容性之探討,因此利用其單一表面官能基的特性來探討各種不同性質對血液相容性的影響將有助於對血拴形成原因有所了解。本研究擬合成出具有–PO4H2及-OP(=O)(OH)OCH2CH2NH2官能基之硫醇並與末端基團為-CH3、-OH、-COOH、-PO3H2、NH2等硫醇在金上形成自我聚集單分子層,進行其表面性質與血液相容性之比較與探討。
      由靜態接觸角實驗結果發現,末端為陰電性官能基的自我聚集單分子層,其酸性官能基上的氫在水中會解離使得材料變得更親水,在動態接觸角的遲滯現象方面,分子結構的立體效應或靜電作用力則會造成自我聚集單分子層紊亂的排列,ESCA的S2p圖譜的結果再次證實了這一點。
      從血液相容性探討的結果我們可歸納出,帶有陰電性官能基的硫醇容易誘導血小板的吸附,而帶正電的材料表面之血液相容性相對較佳,不過就形態學而言,此研究合成出來的硫醇確實有改善金基材的血液相容性。

    Abstract
     It still remains as an unsolved puzzle in terms of the role of interfacial or surface properties of artificial biomaterials in mediating interactions between these materials with biological environment. Various efforts have been undertaken to resolve this issue. Among these, self-assembled monolayer has been of focus. Due to the van der Waals force between the hydrocarbon chains as well as the strong binding between sulfur and gold substrate, the self-assembled monolayers (SAM) formed by the long chain alkanethiol has densely packed, and well-oriented characteristics. This technique could offer a surface with a wide range of chemical structures and surface properties for the studies of blood-materials interactions. Because of its well-defined surface chemical structure, the alkanethiol SAM on gold is employed as the model surface in this study to explore the relationships between the blood compatibility and various surface properties of substrate. Self-assembled monolayers on gold substrate using the thiols with different terminal functional groups, including lab-synthesized thiols of -PO4H2 and -OP(=O)(OH)OCH2CH2NH2, and thiols of -CH3, -OH, -COOH, -PO3H2, -NH2 are employed to draw a comparison between the surface characteristic and blood compatibility.
     Static contact angle measurement indicates the SAMs surface with negative charge terminal group will deprotonate in the water, making the materials hydrophilic. With regard to the hysteresis in the dynamic contact angle measurement, the steric effect and electrostatic interactions among the adsorbed alkanethiols lead to a less ordered packing on the SAM surface. The S2p ESCA spectra further confirm this hypothesis.
     Platelet adhesion test demonstrates the SAMs with negative charge terminal group induce platelet adhesion easily, while the material surface with positive charge functional group has a better blood compatibility. In terms of morphology of adherent platelets, the alkanethiols we synthesize in this study all demonstrate an improvement in the blood compatibility as compared to the bare gold substrate.

    目錄 頁數 中文摘要 I 英文摘要 II 致謝 IV 表目錄 V 圖目錄 VI 主文 第一章、前言 1 第二章、文獻回顧 3 2.1 自我聚集性單分子層( Self-Assembled Monolayers, SAMs) 3 2.2 金屬基材對SAMs排列之影響 5 2.3 細胞膜的結構 6 2.4 帶負電性官能基表面對血液相容性之影響 7 2.5 帶兩性離子官能基表面對血液相容性之影響 9 2.6 凝血機制之探討 10 2.6.1 血液的組成 10 2.6.2 血小板之構造 11 2.6.3 血小板之機能 14 2.6.4 凝血機制的探討 16 2.7 研究動機與目的 17 第三章、實驗及分析儀器原理與其應用 18 3.1 實驗儀器原理 18 3.1.1 真空蒸鍍法 18 3.2 分析儀器原理及應用 19 3.2.1 材料表面分析儀器 21 3.2.1.1 接觸角(Contact Angle) 21 3.2.1.2 掃瞄式電子顯微鏡(Scanning Electron Microscopy, SEM) 22 3.2.1.3 化學分析電子光譜儀(Electron Spectroscopy for Chemical Analysis, ESCA) 23 第四章、實驗方法 25 4.1 實驗藥品與儀器 25 4.2 實驗步驟 32 4.2.1 硫醇之合成 33 4.2.1.1 11-溴十一烷基磷酸(11-Bromoundecanylphosphoric acid)之合成 33 4.2.1.2 11-硫醇十一烷基磷酸(11-Bromoundecanylphosphoric acid)之合成 33 4.2.2.1 11-溴十一烷基磷酸化乙基鄰苯二醯亞胺(11-Bromoundecanylphosphoryl-2-ethylphthalimide) 之合成 34 4.2.2.2 11-硫醇十一烷基磷酸化乙醇胺(11-Mercapto- undecanephosphoryl-2-ethanolamine)之合成 35 4.2.3 黃金基材(Gold Substrate)的製備 36 4.2.4 自我聚集性單分子層的製備 38 4.2.5 接觸角之量測 38 4.2.6 血小板吸附性質之測試 39 第五章、結果與討論 41 5.1 實驗反應機構 41 5.1.1 11-硫醇十一烷基磷酸(11-Mercapto-undecanyl- phosphoric acid)之合成 41 5.1.2 11-硫醇十一烷基磷酸化乙醇胺(11-Mercapto- undecane-phosphoryl-2-ethanolamine)之合成 45 5.2 自我聚集性單分子層之表面性質探討 49 5.2.1 接觸角測試 49 5.2.2 化學分析電子光譜儀(ESCA)測試 52 5.2.3 血小板吸附測試 55 第六章、結論與未來展望 58 6.1 結論 58 6.2 未來展望 59 參考文獻 122

    參考文獻
    1.A. M. Rouhi, “Contemporary Biomaterials,  
     Understanding surfaces is      key to the
     design of clinically useful materials”,
     Chemical and Engineering  News, 51-59. (1999)
    2.Y. F. Missirlis, and W. Lemm, “Protein adsorption tests for polymer   
     surfaces”, In Modern Aspects of Protein Adsorption on Biomaterials, 73-79,
     Netherlands. (1999)
    3.S. L. Cooper, B. R. Young, and M. D. Lelah, “The Physics and chemistry of
     protein-surface interactions”, Interaction of Blood with Natural and
     Artificial Surfaces, E. W., ED., Marcel Dekker, New York, 1. (1981)
    4.C. D. Brain, and G. M. Whitesides, “Modeling Organic Surfaces with Self-
     Assembled Monolayers”, Angew. Chem. Int. Ed. Engl., 28, 506-512. (1989)
    5.R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic
     Disulfides on Gold Surfaces”, J. Am. Chem. Soc., 105, 4481-4483. (1983)
    6.R. G. Nuzzo and L. H. Dubois, and D. L. Allara, “Fundamental Studies of
     Microscopic Wetting on Organic Surfaces. 1. Formation and Structural
     Characterization of a Self-Consistent Series of Polyfunctional Organic
     Monolayers”, J. Am. Chem. Soc., 112, 558-569. (1990)
    7.Colin D. Bain, E. Barry Troughton, Yu-Tai Tao, Joseph Evall, George M.
     Whitesides, and Ralph G. Nuzzo, “Formation of Monolayer Films by the
     Spontaneous Assembly of Organic Thiols from Solution onto Gold”, J. Am.
     Chem. Soc., 111, 321-335. (1989)
    8.C. D. Bain, J. Evall, George M. Whitesides, “Formation of Monolayers by the
     Coadsorption of Thiols on Gold: Variation in the Head Group, Tail Group, and
     Solvent1”, J. Am. Chem. Soc., 111, 7155-7164. (1989)
    9.P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and
     Ralph G. Nuzzo, “Comparison of the Structures and Wetting Properties of
     Self-Assembled Monolayers on n-Alkanethiols on the Coinage Metal Surfaces,
     Cu, Ag, Au”, J. Am. Chem. Soc., 113, 7152-7167.(1991)
    10.L. H. Dubois, B. R. Zegarski, and Ralph G. Nuzzo, “Fundamental Studies of
     Microscopic Wetting on Organic Surfaces. 2. Interaction of Secondary
     Adsorbates with Chemically Textured Organic Monolayers”, J. Am. Chem. Soc.,
     112, 570-579. (1990)
    11.G. E. Poirier, “Coverage-Dependent Phases and Phase Stability of
     Decanethiol on Au(111)”, Langmuir, 15, 1167-1175. (1999)
    12.M. Himmelhaus, I. Gauss, M. Buck, F. Eisert, Ch. Wöll, and M. Grunze,
     “Adsorption of Docosanethiol from Solution on Polycrystalline Silver
     Surfaces: An XPS and NEXAFS Study1”, J. Electron. Spectrsc. Relat. Phenom.,
     92, 139-149. (1998)
    13.M. G. Samant, C. A. Brown, J. G. Gordon, “Stucture of an Ordered Self-
     Assembled Monolayer of Docosyl Mercaptan on Gold (111) by Surface X-ray
     Diffraction”, Langmuir, 17(3), 437-439. (1991)
    14.M. Lindblad, M. Lestelius, A. Johansson, P. Tengvall, and P. Thomsen,
     “Cell and soft tissue interactions with methyl- and hydroxyl-terminated
     alkanethiols on gold surfaces”, Biomaterials, 18, 1059-1068. (1997)
    15.Kevin L. Prime and George M. Whitesides, “Adsorption of Proteins onto
     Surfaces Contain End-attached Oligo(ethylene oxide): A Model System Using
     Self-Assembled Monolayers”, J. Am. Chem. Soc.,115, 10714-10721. (1993)
    16.Kevin L. Prime and George M. Whitesides, “Self-assembled organic
     monolayers: model systems for studying adsorption of proteins at surfaces”,
     Science, 252, 1164-1167. (1991)
    17.G. E. Poirier, and E. D. Pylant, “The Self-Assembled Mechanism of
     Alkanethiols on Au (111)”, Science, 272, 1145-1148. (1996)
    18.A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett
     to Self-Assembly, Academic Press, INC. (1991)
    19.A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem.
     Rev., 96, 1533-1554. (1996)
    20.T. Ishida, S. Yamamoto, W. Mizutani, M. Motomatsu, H. Tokumoto, H. Hokari,
     H. Azehara, and M. Fujihiral, “Evidence for Cleavage of Disulfides in the
     Self-Assembled Monolayer on Au(111)”, Langmuir, 13(13), 3261-3265. (1997)
    21.Ernest B. Troughton, Colid D. Bain, George M. Whitesides, and Ralph G.,
     “Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical
     and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates:
     Structure, Properties, and Reactivity of Constituent Functional Groups”,
     Langmuir, 4, 365-385. (1988)
    22.Paul. E. Laibinis and G. M. Whitesides, “ω-terminated alkanethiolate
     monolayers on surfaces of copper, silver, and gold have similar
     wettabilities”, J. Am. Chem. Soc., 114, 1990-1995. (1995)
    23.T. Smith, “The Hydrophilic Nature of a Clean Gold Surface”, J. Colloid
     Interface Sci., 70(1), 51-55. (1980)
    24.T. Ishida, S. Tsuneda, N. Nishida, M. Hara, H. Sasabe, and W. Knoll,
     “Surface-Conditioning Effect of Gold Substrates on Octadecanethiol Self- 
     Assembled Monolayer Growth”, Langmuir, 13, 4638-4643. (1997)
    25.Lubert Stryer, Biochemistry 4th edition, W. H. Freeman and Company. (1995)
    26.D. K. Han, K. D. Park, K. D. Ahn, S. Y. Jeong and Y. H. Kim, “Preparation
     and surface characterization of PEO-grafted and heparin-immobilized
     polyurethanes”, Journal of Biomedical Materials Research: Applied
     Biomaterials, 23, 87-104, (1989)
    27.D. K. Han, S. Y. Jeong and Y. H. Kim, “Evaluation of blood compatibility
     of PEO-grafted and heparin-immobilized polyurethane”, Journal of Biomedical
     Materials Research: Applied Biomaterials, 23, 211-228, (1989)
    28.A. Z. Okkema, S. A. Visser, S. L. Cooper, “Physical and blood-contacting
     properties of polyurethane based on a sulfonic acid-containing diol chain
     extender”, Journal of Biomedical Materials Research, 25, 1371-1395, (1991)
    29.T. G. Grasel, S. L. Cooper, “Properties and biological interactions of
     polyurethane anionomers: Effect of sulfonate incorporation”, Journal of
     Biomedical Materials Research, 23, 311-338, (1989)
    30.Jin Ho Lee, Gilson Khang, Jin Whan Lee, Hai Bang Lee, “Platelet Adhesion
     on to Chargeable Functional Group Gradient Surface”, J. Biome. Mater. Res.,
     40, 180-186. (1998)
    31.A. Z. Okkema and S. L. Cooper, “Effect of Carboxylate and/or Sulfonate ion
     Incorporation on the Physical and Blood-Contacting Properties of a
     Polyetherurethane”, Biomaterials, 12, 668-676. (1991)
    32.B. R. McAuslan and G. Johnson, “Cell Responses to Biomaterials I: Adhesion
     and Growth of Vascular Endothelial cell on poly(hydroxyethylmethacrylate)
     Following Surface Modification by Hydrolytic Etching”, J. Biome. Mater.
     Res., 21, 921-935. (1987)
    33.J. P. Santerr, P. Hove, N. H. Vanderkamp, and J. L. Brash, “Effect of
     Sulfonation of Segmented Polyurethanes on the Transient adsorption of
     Fibrigen from Plasma: Possible Correlation with Anticoagulant Behavior”, J.
     Biome. Mater. Res., 26, 39-57. (1992)
    34.蔡孟諺, “含亞磷酸酯與亞磷酸官能基的自我聚集性單分子層之合成、表面分析與血小
     板吸附之研究”, 國立成功大學化工所碩士論文, 民國88年。
    35.M. Lestelius, B. Liedberg, and P. Tengvall, “In vitro Plasma Protein
     Adsorption on ω-functionalized Alkanethiolate Self-Assembled Monolayers”,
     Langmuir, 13, 5900-5908. (1997)
    36.J. S. Bennett, “The platelet-fibrinogen interaction”, In: J. N. George,
     A. T. Nurden, D. R. Philips, editors, Platelet membrane glycoprotein, New
     York, USA: Plenum Press, 193-214. (1985)
    37.M. Malmsten, “Protein adsorption at phospholipid surfaces”, J. Colloid
     Interface Sci., 172, 106. (1995)
    38.S. Ong, S.-J. Cal, C. Bernal, D. Rhee, X. Qiu, C. Pidgeon, “Phospholipid
     immobilization on solid surfaces”, Anal. Chem., 66, 782. (1994)
    39.A. L. Plant, M. Gueguetchkeri, W. Yap, “Supported phospholipids/
     alkanethiol biomimetic membranes: insulating properties”, Biophys. J., 67,
     1126. (1994)
    40.M.D. Lelah, J.A. Pierce, L.K. Lambrecht, and S.L. Cooper, “Polyether-
     urethane ionomers: surface property / ex vivo blood compatibility
     relationships”, J. Colloid Interface Sci., 104, 422. (1985)
    41.K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, and N. Nakabayashi,
     “Reduced thrombogenicity of polymers having phospholipid polar groups”, J.
     Biomed. Mater. Res., 24, 1069. (1990)
    42.K. Ishihara, K. Fukumoto, H. Miyazaki, and N. Nakabayashi, “Improvement of
     hemocompatibility on a cellulose dialysis membrane with a novel biomedical
     polymer having a phospholipid polar group”, Artif. Org., 18, 559. (1994)
    43.Y.-J. Li, R. Bahulekar, T.-M. Chen, Y.-F. Wang, M. Kodama, and T. Nakaya,
     “The effect of alkyl chain length of amphiphilic phospholipid polyurethanes
     on haemocompatibilities”, Macromol. Chem. Phys., 197, 2827. (1996)
    44.J. M. Courtney, N. M. K. Lamba, S. Sundaram, and C. D. Forbes,
     “Biomaterials for blood-contacting applications”, Biomaterials 15 (1994)
     737
    45.R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, and G. M. Whitesides,
     “ Zwitterionic SAMs that resist nonspecific adsorption of protein from
     aqueous buffer”, Langmuir 17 (2001) 2841.
    46.E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber,
     and G. M. Whitesides, “ Self-assembled monolayers that resist the
     adsorption of proteins and the adhesion of bacterial and mammalian cells”,
     Langmuir 17 (2001) 6336.
    47.何敏夫 編著,”血液學”,合記出版社,(1993)
    48.Daniel Chiras, Human Biology, 4th Edition : Health, Homeostasis, and the
     Environment, Jones and Bartlett Publishers, Inc. (2002)
    49.T. M. Ko, J. C. Lin, and S. L. Cooper, “Surface characterization and
     platelet adhesion studies of plasma-sulphonated polyethylene”,
     Biomaterials, 14, 657-664. (1993)
    50.Kent M. Van De Graaff and Stuart Ira Fox, “Circulatory System: Blood”,
     Concepts of Human Anatomy and Physiology, Chap 20, 531-542.
    51.Joseph D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers
     Volume 1 Surface Chemistry and Physics, Plenum press, New York. (1985)
    52.Buddy D. Ranter and David G. Castner, “Electron Spectroscopy for Chemical
     Analysis in Surface Analysis Techniques and Application”, Wiley, New York,
     (1992)
    53.Buddy D. Ranter, “Characterization of Biomaterial Surfaces”,
     Cardiovascular Pathology, 3, 887s-100s. (1993)
    54.J. Zhang, J. Kirkham, C. Robinson, Mark L. Wallwork, D. Alastair Smith, A.
     Marsh, and M. Wong, “Determination of the Ionization State of 11-
     Thioundecyl-1-phosphonic Acid in Self-Assembled Monolayers by Chemical Force
     Microscopy”, Anal. Chem., 72, 1973-1978. (2000)
    55.Charles H. Schramm, Henry Lemaire, and R. H. Karlson, “The Synthesis of
     Mercaptoalkanesulfonic acid”, J. Am. Chem. Soc., 77, 6231-6233. (1955)
    56.B. C. Cossar, Jane O. Fournier, D. L. Fields, and D. D. Reynolds,
     “Preparation of Thiols”, J. Org. Chem., 27, 93-95. (1962)
    57.D. L. Klayman, R. J. Shine, and J. D. Bower, “The Reaction of S-
     Methiodide Derivatives of Activated Thioureas with Hydroxylic Compounds. A
     Novel Synthesis of Mercaptans”, J. Org. Chem., 37(10), 1532-1537. (1972)
    58.O. Mitsunobu, “The Use of Diethyl Azodicarboxylate and Triphenylphosphine
     in Synthesis and Transformation of Natural Products”, Synthesis, 1, 1.
     (1981)
    59.M. Tanahashi, and T. Matsuda, “Surface Functiona Group Dependence on
     Apatite Formation on Self-assembled Monolayers in a Simulated Body Fluid”,
     J. Biomed. Mater. Res., 34, 305-315. (1997)
    60.H. Wang, S. Chen, L. Li, and S. Jiang, “Improved Method for the
     Preparation of Carboxylic Acid and Amine Terminated Self-Assembled
     Monolayers of Alkanethiolates”, Langmuir, 21, 2633-2636. (2005)
    61.David G. Castner, Kenneth Hinds, and David W. Grainger, “X-ray
     Photoelectron Spectroscopy Sulfur 2P Study of Organic Thiol and Disulfide
     Binding interactions with Gold Surfaces ”, Langmuir, 12, 5083-5086. (1996)
    62.N. Inagaki, S. Tasaka, and Y. Horikawa, “Nafion-like Thin Film Plasma-
     Polymerized from Perfluorobenzene/ SO2 Mixture”, J. Polym. Sci., 27, 3495-
     3501. (1989)
    63.Alberts et al. Molecular Biology of the Cell, 3rd Edition, Garland
     Publishing, New York. (1994.)

    下載圖示 校內:2010-07-14公開
    校外:2010-07-14公開
    QR CODE