| 研究生: |
蔡美慧 Tsai, Mei-Hui |
|---|---|
| 論文名稱: |
含磷酸根與磷酸化乙醇胺官能基的自我聚集性單分子層之合成、表面分析與血小板吸附之研究 Synthesis, Surface Characterization, and Platelet Adhesion Studies of Self-Assembled Monolayers (SAMs) with Phosphoric Acid and Phosphorylethanolamine Terminal Functionalities |
| 指導教授: |
林睿哲
Lin, Jui-Che |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
| 論文出版年: | 2005 |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 144 |
| 中文關鍵詞: | 自我聚集單分子層、血液相容性、化學分析電子光譜儀(ESCA)、親疏水性質 |
| 外文關鍵詞: | electron spectroscopy of chemical analysis, blood compatibility, Self-assembled monolayers, wettability |
| 相關次數: | 點閱:97 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
摘要
生醫材料的表面性質對生物相容性的研究是非常重要的,而長鏈的烷基硫醇可藉由化學鍵結吸附在金的表面形成緻密排列且具有方向性的自我聚集單分子層,此恰好提供一多樣末端結構與表面性質以作為材料表面與血液相容性之探討,因此利用其單一表面官能基的特性來探討各種不同性質對血液相容性的影響將有助於對血拴形成原因有所了解。本研究擬合成出具有–PO4H2及-OP(=O)(OH)OCH2CH2NH2官能基之硫醇並與末端基團為-CH3、-OH、-COOH、-PO3H2、NH2等硫醇在金上形成自我聚集單分子層,進行其表面性質與血液相容性之比較與探討。
由靜態接觸角實驗結果發現,末端為陰電性官能基的自我聚集單分子層,其酸性官能基上的氫在水中會解離使得材料變得更親水,在動態接觸角的遲滯現象方面,分子結構的立體效應或靜電作用力則會造成自我聚集單分子層紊亂的排列,ESCA的S2p圖譜的結果再次證實了這一點。
從血液相容性探討的結果我們可歸納出,帶有陰電性官能基的硫醇容易誘導血小板的吸附,而帶正電的材料表面之血液相容性相對較佳,不過就形態學而言,此研究合成出來的硫醇確實有改善金基材的血液相容性。
Abstract
It still remains as an unsolved puzzle in terms of the role of interfacial or surface properties of artificial biomaterials in mediating interactions between these materials with biological environment. Various efforts have been undertaken to resolve this issue. Among these, self-assembled monolayer has been of focus. Due to the van der Waals force between the hydrocarbon chains as well as the strong binding between sulfur and gold substrate, the self-assembled monolayers (SAM) formed by the long chain alkanethiol has densely packed, and well-oriented characteristics. This technique could offer a surface with a wide range of chemical structures and surface properties for the studies of blood-materials interactions. Because of its well-defined surface chemical structure, the alkanethiol SAM on gold is employed as the model surface in this study to explore the relationships between the blood compatibility and various surface properties of substrate. Self-assembled monolayers on gold substrate using the thiols with different terminal functional groups, including lab-synthesized thiols of -PO4H2 and -OP(=O)(OH)OCH2CH2NH2, and thiols of -CH3, -OH, -COOH, -PO3H2, -NH2 are employed to draw a comparison between the surface characteristic and blood compatibility.
Static contact angle measurement indicates the SAMs surface with negative charge terminal group will deprotonate in the water, making the materials hydrophilic. With regard to the hysteresis in the dynamic contact angle measurement, the steric effect and electrostatic interactions among the adsorbed alkanethiols lead to a less ordered packing on the SAM surface. The S2p ESCA spectra further confirm this hypothesis.
Platelet adhesion test demonstrates the SAMs with negative charge terminal group induce platelet adhesion easily, while the material surface with positive charge functional group has a better blood compatibility. In terms of morphology of adherent platelets, the alkanethiols we synthesize in this study all demonstrate an improvement in the blood compatibility as compared to the bare gold substrate.
參考文獻
1.A. M. Rouhi, “Contemporary Biomaterials,
Understanding surfaces is key to the
design of clinically useful materials”,
Chemical and Engineering News, 51-59. (1999)
2.Y. F. Missirlis, and W. Lemm, “Protein adsorption tests for polymer
surfaces”, In Modern Aspects of Protein Adsorption on Biomaterials, 73-79,
Netherlands. (1999)
3.S. L. Cooper, B. R. Young, and M. D. Lelah, “The Physics and chemistry of
protein-surface interactions”, Interaction of Blood with Natural and
Artificial Surfaces, E. W., ED., Marcel Dekker, New York, 1. (1981)
4.C. D. Brain, and G. M. Whitesides, “Modeling Organic Surfaces with Self-
Assembled Monolayers”, Angew. Chem. Int. Ed. Engl., 28, 506-512. (1989)
5.R. G. Nuzzo and D. L. Allara, “Adsorption of Bifunctional Organic
Disulfides on Gold Surfaces”, J. Am. Chem. Soc., 105, 4481-4483. (1983)
6.R. G. Nuzzo and L. H. Dubois, and D. L. Allara, “Fundamental Studies of
Microscopic Wetting on Organic Surfaces. 1. Formation and Structural
Characterization of a Self-Consistent Series of Polyfunctional Organic
Monolayers”, J. Am. Chem. Soc., 112, 558-569. (1990)
7.Colin D. Bain, E. Barry Troughton, Yu-Tai Tao, Joseph Evall, George M.
Whitesides, and Ralph G. Nuzzo, “Formation of Monolayer Films by the
Spontaneous Assembly of Organic Thiols from Solution onto Gold”, J. Am.
Chem. Soc., 111, 321-335. (1989)
8.C. D. Bain, J. Evall, George M. Whitesides, “Formation of Monolayers by the
Coadsorption of Thiols on Gold: Variation in the Head Group, Tail Group, and
Solvent1”, J. Am. Chem. Soc., 111, 7155-7164. (1989)
9.P. E. Laibinis, G. M. Whitesides, D. L. Allara, Y. T. Tao, A. N. Parikh, and
Ralph G. Nuzzo, “Comparison of the Structures and Wetting Properties of
Self-Assembled Monolayers on n-Alkanethiols on the Coinage Metal Surfaces,
Cu, Ag, Au”, J. Am. Chem. Soc., 113, 7152-7167.(1991)
10.L. H. Dubois, B. R. Zegarski, and Ralph G. Nuzzo, “Fundamental Studies of
Microscopic Wetting on Organic Surfaces. 2. Interaction of Secondary
Adsorbates with Chemically Textured Organic Monolayers”, J. Am. Chem. Soc.,
112, 570-579. (1990)
11.G. E. Poirier, “Coverage-Dependent Phases and Phase Stability of
Decanethiol on Au(111)”, Langmuir, 15, 1167-1175. (1999)
12.M. Himmelhaus, I. Gauss, M. Buck, F. Eisert, Ch. Wöll, and M. Grunze,
“Adsorption of Docosanethiol from Solution on Polycrystalline Silver
Surfaces: An XPS and NEXAFS Study1”, J. Electron. Spectrsc. Relat. Phenom.,
92, 139-149. (1998)
13.M. G. Samant, C. A. Brown, J. G. Gordon, “Stucture of an Ordered Self-
Assembled Monolayer of Docosyl Mercaptan on Gold (111) by Surface X-ray
Diffraction”, Langmuir, 17(3), 437-439. (1991)
14.M. Lindblad, M. Lestelius, A. Johansson, P. Tengvall, and P. Thomsen,
“Cell and soft tissue interactions with methyl- and hydroxyl-terminated
alkanethiols on gold surfaces”, Biomaterials, 18, 1059-1068. (1997)
15.Kevin L. Prime and George M. Whitesides, “Adsorption of Proteins onto
Surfaces Contain End-attached Oligo(ethylene oxide): A Model System Using
Self-Assembled Monolayers”, J. Am. Chem. Soc.,115, 10714-10721. (1993)
16.Kevin L. Prime and George M. Whitesides, “Self-assembled organic
monolayers: model systems for studying adsorption of proteins at surfaces”,
Science, 252, 1164-1167. (1991)
17.G. E. Poirier, and E. D. Pylant, “The Self-Assembled Mechanism of
Alkanethiols on Au (111)”, Science, 272, 1145-1148. (1996)
18.A. Ulman, An Introduction to Ultrathin Organic Films from Langmuir-Blodgett
to Self-Assembly, Academic Press, INC. (1991)
19.A. Ulman, “Formation and Structure of Self-Assembled Monolayers”, Chem.
Rev., 96, 1533-1554. (1996)
20.T. Ishida, S. Yamamoto, W. Mizutani, M. Motomatsu, H. Tokumoto, H. Hokari,
H. Azehara, and M. Fujihiral, “Evidence for Cleavage of Disulfides in the
Self-Assembled Monolayer on Au(111)”, Langmuir, 13(13), 3261-3265. (1997)
21.Ernest B. Troughton, Colid D. Bain, George M. Whitesides, and Ralph G.,
“Monolayer Films Prepared by the Spontaneous Self-Assembly of Symmetrical
and Unsymmetrical Dialkyl Sulfides from Solution onto Gold Substrates:
Structure, Properties, and Reactivity of Constituent Functional Groups”,
Langmuir, 4, 365-385. (1988)
22.Paul. E. Laibinis and G. M. Whitesides, “ω-terminated alkanethiolate
monolayers on surfaces of copper, silver, and gold have similar
wettabilities”, J. Am. Chem. Soc., 114, 1990-1995. (1995)
23.T. Smith, “The Hydrophilic Nature of a Clean Gold Surface”, J. Colloid
Interface Sci., 70(1), 51-55. (1980)
24.T. Ishida, S. Tsuneda, N. Nishida, M. Hara, H. Sasabe, and W. Knoll,
“Surface-Conditioning Effect of Gold Substrates on Octadecanethiol Self-
Assembled Monolayer Growth”, Langmuir, 13, 4638-4643. (1997)
25.Lubert Stryer, Biochemistry 4th edition, W. H. Freeman and Company. (1995)
26.D. K. Han, K. D. Park, K. D. Ahn, S. Y. Jeong and Y. H. Kim, “Preparation
and surface characterization of PEO-grafted and heparin-immobilized
polyurethanes”, Journal of Biomedical Materials Research: Applied
Biomaterials, 23, 87-104, (1989)
27.D. K. Han, S. Y. Jeong and Y. H. Kim, “Evaluation of blood compatibility
of PEO-grafted and heparin-immobilized polyurethane”, Journal of Biomedical
Materials Research: Applied Biomaterials, 23, 211-228, (1989)
28.A. Z. Okkema, S. A. Visser, S. L. Cooper, “Physical and blood-contacting
properties of polyurethane based on a sulfonic acid-containing diol chain
extender”, Journal of Biomedical Materials Research, 25, 1371-1395, (1991)
29.T. G. Grasel, S. L. Cooper, “Properties and biological interactions of
polyurethane anionomers: Effect of sulfonate incorporation”, Journal of
Biomedical Materials Research, 23, 311-338, (1989)
30.Jin Ho Lee, Gilson Khang, Jin Whan Lee, Hai Bang Lee, “Platelet Adhesion
on to Chargeable Functional Group Gradient Surface”, J. Biome. Mater. Res.,
40, 180-186. (1998)
31.A. Z. Okkema and S. L. Cooper, “Effect of Carboxylate and/or Sulfonate ion
Incorporation on the Physical and Blood-Contacting Properties of a
Polyetherurethane”, Biomaterials, 12, 668-676. (1991)
32.B. R. McAuslan and G. Johnson, “Cell Responses to Biomaterials I: Adhesion
and Growth of Vascular Endothelial cell on poly(hydroxyethylmethacrylate)
Following Surface Modification by Hydrolytic Etching”, J. Biome. Mater.
Res., 21, 921-935. (1987)
33.J. P. Santerr, P. Hove, N. H. Vanderkamp, and J. L. Brash, “Effect of
Sulfonation of Segmented Polyurethanes on the Transient adsorption of
Fibrigen from Plasma: Possible Correlation with Anticoagulant Behavior”, J.
Biome. Mater. Res., 26, 39-57. (1992)
34.蔡孟諺, “含亞磷酸酯與亞磷酸官能基的自我聚集性單分子層之合成、表面分析與血小
板吸附之研究”, 國立成功大學化工所碩士論文, 民國88年。
35.M. Lestelius, B. Liedberg, and P. Tengvall, “In vitro Plasma Protein
Adsorption on ω-functionalized Alkanethiolate Self-Assembled Monolayers”,
Langmuir, 13, 5900-5908. (1997)
36.J. S. Bennett, “The platelet-fibrinogen interaction”, In: J. N. George,
A. T. Nurden, D. R. Philips, editors, Platelet membrane glycoprotein, New
York, USA: Plenum Press, 193-214. (1985)
37.M. Malmsten, “Protein adsorption at phospholipid surfaces”, J. Colloid
Interface Sci., 172, 106. (1995)
38.S. Ong, S.-J. Cal, C. Bernal, D. Rhee, X. Qiu, C. Pidgeon, “Phospholipid
immobilization on solid surfaces”, Anal. Chem., 66, 782. (1994)
39.A. L. Plant, M. Gueguetchkeri, W. Yap, “Supported phospholipids/
alkanethiol biomimetic membranes: insulating properties”, Biophys. J., 67,
1126. (1994)
40.M.D. Lelah, J.A. Pierce, L.K. Lambrecht, and S.L. Cooper, “Polyether-
urethane ionomers: surface property / ex vivo blood compatibility
relationships”, J. Colloid Interface Sci., 104, 422. (1985)
41.K. Ishihara, R. Aragaki, T. Ueda, A. Watenabe, and N. Nakabayashi,
“Reduced thrombogenicity of polymers having phospholipid polar groups”, J.
Biomed. Mater. Res., 24, 1069. (1990)
42.K. Ishihara, K. Fukumoto, H. Miyazaki, and N. Nakabayashi, “Improvement of
hemocompatibility on a cellulose dialysis membrane with a novel biomedical
polymer having a phospholipid polar group”, Artif. Org., 18, 559. (1994)
43.Y.-J. Li, R. Bahulekar, T.-M. Chen, Y.-F. Wang, M. Kodama, and T. Nakaya,
“The effect of alkyl chain length of amphiphilic phospholipid polyurethanes
on haemocompatibilities”, Macromol. Chem. Phys., 197, 2827. (1996)
44.J. M. Courtney, N. M. K. Lamba, S. Sundaram, and C. D. Forbes,
“Biomaterials for blood-contacting applications”, Biomaterials 15 (1994)
737
45.R. E. Holmlin, X. Chen, R. G. Chapman, S. Takayama, and G. M. Whitesides,
“ Zwitterionic SAMs that resist nonspecific adsorption of protein from
aqueous buffer”, Langmuir 17 (2001) 2841.
46.E. Ostuni, R. G. Chapman, M. N. Liang, G. Meluleni, G. Pier, D. E. Ingber,
and G. M. Whitesides, “ Self-assembled monolayers that resist the
adsorption of proteins and the adhesion of bacterial and mammalian cells”,
Langmuir 17 (2001) 6336.
47.何敏夫 編著,”血液學”,合記出版社,(1993)
48.Daniel Chiras, Human Biology, 4th Edition : Health, Homeostasis, and the
Environment, Jones and Bartlett Publishers, Inc. (2002)
49.T. M. Ko, J. C. Lin, and S. L. Cooper, “Surface characterization and
platelet adhesion studies of plasma-sulphonated polyethylene”,
Biomaterials, 14, 657-664. (1993)
50.Kent M. Van De Graaff and Stuart Ira Fox, “Circulatory System: Blood”,
Concepts of Human Anatomy and Physiology, Chap 20, 531-542.
51.Joseph D. Andrade, Surface and Interfacial Aspects of Biomedical Polymers
Volume 1 Surface Chemistry and Physics, Plenum press, New York. (1985)
52.Buddy D. Ranter and David G. Castner, “Electron Spectroscopy for Chemical
Analysis in Surface Analysis Techniques and Application”, Wiley, New York,
(1992)
53.Buddy D. Ranter, “Characterization of Biomaterial Surfaces”,
Cardiovascular Pathology, 3, 887s-100s. (1993)
54.J. Zhang, J. Kirkham, C. Robinson, Mark L. Wallwork, D. Alastair Smith, A.
Marsh, and M. Wong, “Determination of the Ionization State of 11-
Thioundecyl-1-phosphonic Acid in Self-Assembled Monolayers by Chemical Force
Microscopy”, Anal. Chem., 72, 1973-1978. (2000)
55.Charles H. Schramm, Henry Lemaire, and R. H. Karlson, “The Synthesis of
Mercaptoalkanesulfonic acid”, J. Am. Chem. Soc., 77, 6231-6233. (1955)
56.B. C. Cossar, Jane O. Fournier, D. L. Fields, and D. D. Reynolds,
“Preparation of Thiols”, J. Org. Chem., 27, 93-95. (1962)
57.D. L. Klayman, R. J. Shine, and J. D. Bower, “The Reaction of S-
Methiodide Derivatives of Activated Thioureas with Hydroxylic Compounds. A
Novel Synthesis of Mercaptans”, J. Org. Chem., 37(10), 1532-1537. (1972)
58.O. Mitsunobu, “The Use of Diethyl Azodicarboxylate and Triphenylphosphine
in Synthesis and Transformation of Natural Products”, Synthesis, 1, 1.
(1981)
59.M. Tanahashi, and T. Matsuda, “Surface Functiona Group Dependence on
Apatite Formation on Self-assembled Monolayers in a Simulated Body Fluid”,
J. Biomed. Mater. Res., 34, 305-315. (1997)
60.H. Wang, S. Chen, L. Li, and S. Jiang, “Improved Method for the
Preparation of Carboxylic Acid and Amine Terminated Self-Assembled
Monolayers of Alkanethiolates”, Langmuir, 21, 2633-2636. (2005)
61.David G. Castner, Kenneth Hinds, and David W. Grainger, “X-ray
Photoelectron Spectroscopy Sulfur 2P Study of Organic Thiol and Disulfide
Binding interactions with Gold Surfaces ”, Langmuir, 12, 5083-5086. (1996)
62.N. Inagaki, S. Tasaka, and Y. Horikawa, “Nafion-like Thin Film Plasma-
Polymerized from Perfluorobenzene/ SO2 Mixture”, J. Polym. Sci., 27, 3495-
3501. (1989)
63.Alberts et al. Molecular Biology of the Cell, 3rd Edition, Garland
Publishing, New York. (1994.)