| 研究生: |
楊博智 Yang, Bo-Jhih |
|---|---|
| 論文名稱: |
Gysel功率分配器合成與分析 Synthesis and Analysis of Gysel Power Divider |
| 指導教授: |
蔡智明
Tsai, Chih-Ming |
| 學位類別: |
碩士 Master |
| 系所名稱: |
電機資訊學院 - 電腦與通信工程研究所 Institute of Computer & Communication Engineering |
| 論文出版年: | 2013 |
| 畢業學年度: | 101 |
| 語文別: | 中文 |
| 論文頁數: | 118 |
| 中文關鍵詞: | 功率分配器 、合成理論 |
| 外文關鍵詞: | Power divider, synthesis theory |
| 相關次數: | 點閱:76 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於Gysel功率分配器相關文獻,大部分使用奇偶模態分析方式,只針對中心頻率點設計,或以最佳化方法求得電路架構應有的響應結果。本論文提出不同的角度設計方式,整合大部分功率分配器之相關應用,藉由找出其等效電路,運用合成方式如此不但符合設計需求,也可掌握此電路架構物理特性。一開始先以近似設計原始二路Gysel功率分配器,再推廣到不等功率輸出設計。
然而我們以奇偶模態分析原始電路時,發現兩模態的等效電路不會一樣,以致於在設計頻帶內無法有良好之隔離度響應,所以大部分文獻只能在中心頻率點上設計分析。因此我們引進一個理想的1:-1變壓器,並增加冗餘元件改變原始電路,選擇讓奇偶模態等效電路相同條件下,使其合成出同樣的響應函數,讓頻帶內的隔離度變好,進而提出對邊短路耦合線功率分配器。之後用上述改良的條件為基準,應用到相關設計Gysel功率分配器之電路,同時也討論對於180o相位移在匹配端或隔離端功率分配器之架構分類。
在設計改良的Gysel功率分配器當中,Gysel電路頻寬有其限制範圍,本論文提出解決方式,並延伸到高階Gysel功率分配器,設計成擁有超寬頻響應特性。針對現今電子產品主要以縮小面積為訴求,本論文提出微型化功率分配器,以期符合趨勢所需,最後探討至N路Gysel功率分配器的設計方式。而實作部分我們以原始Gysel電路與改良的功率分配器比較結果,來驗證其合成方式之可行性。
So far, most of the papers about Gysel power divider are analyzed by even-mode and odd-mode method at center frequency, or by numerical optimization. In this thesis, we propose a different way to design all the related power divider based on synthesis methods. This not only depend on specification to design but know the possibility for the circuit. First at all, we use synthesis theories to design original Gysel power divider, and then extend unequal power divider.
We analyze original Gysel power divider by even-mode and odd-mode and find the different equivalent circuits in even-odd mode. This reason will cause weak isolation, so most papers are only designed at center frequency no broadband bandwidth. We introduce ideal 1:-1 transformer and add redundant elements to get the same equivalent circuit. Therefore, we propose modified diagonally short-circuited coupled line power divider, it can be synthesized the same response so that isolation would be improved in the passband. Furthermore, we apply above modified condition and then extend related papers research. At the same time, the 180o phase shift can be designed into the matching or the isolation network power dividers.
When designing the modified Gysel power divider, the bandwidth has limitation. We propose the solution and even develop higher order Gysel power divider to own ultra wideband response. Nowadays, almost all electronic products become size reduction, so this thesis also proposes miniaturized power divider. Finally, we also discuss how to design N-way Gysel power divider. We compare diagonally short-circuited coupled line power divider with original Gysel power divider and validate the synthesis method by electromagnetic simulations and experiments.
[1.1] E. J. Wilkinson, “An n-way hybrid power divider,” IEEE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jane 1960.
[1.2] U. H. Gysel, “A new n-way power divider/combiner suitable for high-power applications,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 116-118, May 1975.
[1.3] B. L. Ooi, W. Palei, and M. S. Leong, “Broad-banding technique for in-phase hybrid ring equal power divider,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 7, pp. 1790-1794, July 2002.
[1.4] S. B. Cohn, “A class of broadband three-port TEM-mode hybrids,” IEEE Trans. Microwave Theory Tech., vol. MTT-16, no. 2, pp. 110-116, Feb. 1968.
[1.5] H. Oraizi and A. R. Sharifi, “Optimum design of asymmetrical multisection two-way power dividers with arbitrary power division and impedance matching,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 6, pp. 1478-1490, June 2011.
[1.6] A. M. Abbosh, “Multilayer inphase power divider for UWB applications,” IEEE Microwave and Optical Tech. Lett., vol. 50, no. 5, pp. 1402-1405, May 2008.
[1.7] B. L. Ooi, “Compact EBG in-phase hybrid-ring equal power divider,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 7, pp. 2329-2334, July 2005.
[1.8] J. Guan, L. J. Zhang, Z. Y. Sun, Y. Q. Leng, Y. T. Peng, and Y. P. Yan, “Modified Gysel power divider with harmonic supperssion performance,” Progress In Electromagnetics Research C, vol. 31, pp. 255-269, Aug. 2012.
[1.9] Y. Wu and Y. Liu, “A novel wideband coupled-line Gysel power divider with function of impedance matching,” Electromagnetic Taylor and Francis, pp. 2012-2021, Sept. 2012.
[2.1] H. J. Carlin and R. A. Friedenson, “Gain bandwidth properties of a distributed parameter load,” IEEE Trans. Circuit Theory, vol. CT-15, pp. 455-464, Dec. 1968.
[2.2] R. Levy and J. Helszajn, “Specific equations for one and two section quarter-wave matching networks for stub-resistor loads,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, no. 1, pp. 55-63, Jan. 1982.
[2.3] H. J. Carlin and W. Kohler, “Direct synthesis of band-pass transmission line structures,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, pp. 283-297, May 1965.
[2.4] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarter-wave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, no. 5, pp. 316-327, May 1965.
[2.5] R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 8, pp. 678-686, Aug. 1971.
[2.6] J. Helszajn, Synthesis of Lumped Element, Distributed and Planar Filters, McGraw-Hill, New York, pp. 286, 1990.
[2.7] H. J. Orchard and G. C. Temes, “Filter design using transformed variables,” IEEE Trans. Circuit Theory, vol. CT-15, no. 4, pp. 385-408, Dec. 1968.
[3.1] U. H. Gysel, “A new n-way power divider/combiner suitable for high-power applications,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 116-118, Jan. 1975.
[3.2] E. J. Wilkinson, ‘‘An n-way hybrid power divider,’’ IRE Trans. Microwave Theory Tech., vol. MTT-8, pp. 116-118, Jane 1960.
[3.3] B. L. Ooi, W. Palei, and M. S. Leong, “Broad-banding technique for in-phase hybrid ring equal power divider,” IEEE Trans. Microwave Theory Tech., vol. 50, no. 7, pp. 1790-1794, July 2002.
[3.4] H. O. and A. R. Sharifi, “Optimum design of asymmetrical multisection two-way power dividers with arbitrary power division and impedance matching,” IEEE Trans. Microwave Theory Tech., vol. 59, no. 6, pp. 1478-1490, June 2011.
[3.5] F. Ardemagni, “An optimized L-band eight-way Gysel power divider-combiner,”
IEEE Trans. Microwave Theory Tech., vol. MTT-31, no. 6, pp. 491-495, June 1983.
[3.6] J. Reed and G. J. Wheeler, “A method of analysis of symmetrical four-port networks,” IRE Trans. Microwave Theory Tech., vol. MTT-4, no. 4, pp. 246-252, Oct. 1956.
[3.7] R. Levy and J. Helszajn, “Specific equations for one and two section quarter-wave matching networks for stub-resistor loads,” IEEE Trans. Microwave Theory Tech., vol. MTT-30, no. 1, pp. 55-63, Jan. 1982.
[3.8] Y. Wu, Y. Liu, and S. Li, “A modified Gysel power divider of arbitrary power ratio and real terminated impedances,’’ IEEE Microw. Wireless Compon. Lett., vol. 21, no. 11, pp. 601-603, Nov. 2011.
[3.9] J. J. Taub and B. Fitzgerald, “A note on n-way hybrid power divider,” IEEE Trans. Microw. Theory Tech., vol. 12, no. 2, pp. 260-261, March 1964.
[3.10] R. B. Ekinge, “A new method of synthesizing matched broad-band TEM-mode three-ports,’’ IEEE Trans. Microwave Theory Tech., vol. MTT-19, pp. 81-88, Jan. 1971.
[3.11] L. Chiu and Q. Xue, “A parallel-strip ring power divider with high isolation and arbitrary power-dividing ratio,’’ IEEE Trans. Microwave Theory Tech., vol. 55, no. 11, pp. 2419-2426, Nov. 2007.
[3.12] Q. Guo, Y. Ma, and J. Ju, “A novel broadband high-power combiner,” Proceedings of Asia-Pacific Microwave Conf., vol. 5, no. 4-7, Dec. 2005.
[3.13] S. March, “A wideband stripline hybrid ring,’’ IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 361, Jun. 1968.
[3.14] G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Network, and Coupling Structures. McGraw-Hill, New York, 1964, Chap. 5, pp. 220.
[3.15] Y. -L. Su, Synthesis of Narrowband Three-Line Baluns, National Cheng Kung University, Thesis for Master of Science, July 2011.
[3.16] S. W. Wong and L. Zhu, “Ultra-wideband power divider with good in-band splitting and isolation performances,” IEEE Microw. Wireless Compon. Lett., vol. 18, no. 8, pp. 518-520, Aug. 2008.
[3.17] A. M. Abbosh, “Multilayer inphase power divider for UWB applications,” IEEE Microwave and Optical Tech. Lett., vol. 50, no. 5, pp. 1402-1405, May 2008.
[3.18] L. Zhu, S. Sun, and W. Menzel, “Ultra-wideband (UWB) bandpass filters using multiple-mode resonator,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[3.19] M. C. Horton and R. J. Wenzel, “General theory and design of optimum quarter-wave TEM filters,” IEEE Trans. Microwave Theory Tech., vol. MTT-13, no. 5, pp. 316-327, May 1965.
[3.20] B. L. Ooi, “Compact EBG in-phase hybrid-ring equal power divider,’’ IEEE Trans. Microwave Theory Tech., vol. 53, no. 7, pp. 2329-2334, Jul. 2005.
[3.21] J. Guan, L. J. Zhang, Z. Y. Sun, Y. Q. Leng, Y. T. Peng, and Y. P. Yan, “Modified Gysel power divider with harmonic supperssion performance,” Progress In Electromagnetics Research C, vol. 31, pp. 255-269, Aug. 2012.
[3.22] R. J. Wenzel, “Synthesis of combline and capacitively loaded interdigital bandpass filters of arbitrary bandwidth,” IEEE Trans. Microw. Theory Tech., vol. MTT-19, no. 8, pp. 678-686, Aug. 1971.
[5.1] H. R. Ahn, K Lee, and N. H. Myung, “General design equations of n-way arbitrary power dividers,” IEEE MTT-S Int. Microw. Symp. Dig., pp. 65-68, June 2004.