簡易檢索 / 詳目顯示

研究生: 施明志
Shih, Ming-Chih
論文名稱: 應用於人腦電腦介面之主動式手部輔具
Active Orthotic Hand for Brain-Computer Interface
指導教授: 林宙晴
Lin, Chou-Ching K.
朱銘祥
Ju, Ming-Shaung
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 中文
論文頁數: 79
中文關鍵詞: 隨機共振法人腦電腦 介面生物回授手部輔具
外文關鍵詞: biofeedback, brain-computer interface (BCI), orthotic hand, stochastic resonance
相關次數: 點閱:72下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   中風和脊髓損傷常造成肌肉與中樞神經管道的中斷,使患者失去控制肌肉的能力,無法自主運動,人腦電腦介面為神經工程中幫助患者恢復自主意志與外界溝通能力的重要方法之一。人腦電腦介面系統中需要輔具以輔助患者肌力之不足,或提供生物回饋以增進系統之性能。

      本研究目的在於發展一套供人腦電腦介面用之雙自由度主動式手部輔具,該輔具以聚丙烯為主體,RC伺服馬達為動力源。控制系統方面則建構了兩種邏輯控制,即開關邏輯及有限狀態邏輯,以配合腦波辨識率程度不同的使用者。此外本輔具更裝設一機械刺激器於受測者手掌,利用隨機共振法強化波。最後進行常人人體實驗,共有七名受測者,由受測者想像左右側抓握物件並配合機械刺激,測試穿戴手部輔具與否對本研究室先前發展之腦波辨識率系統之影響。以two-way ANOVA進行實驗數據統計分析,選取顯著水準0.1,結果顯示左右側想像與辨識率高低有關,且非慣用側想像平均辨識率提高約11.3%。雖然穿戴手部輔具在統計分析上並無意義,但穿戴後其平均辨識率約提高6.2%。

      與前代主動式輔具比較,本研究發展之輔具重量更輕,腦波干擾低,唯辨識率較低。未來若能增加波以進行辨識,並結合生物回授訓練,或許能得到更佳的辨識率。

      Stroke and spinal cord injury frequently lead to the disconnection between central nervous system and muscles. Patients lose the ability of muscle control and cannot exercise on their will. Brain-computer interface (BCI) is one of the important technologies in neural engineering to help patients recover communication between their mind and environment. In a BCI system, orthotic devices are necessary either to enhance the weak muscles or to provide biofeedback to improve performance of the man-machine system.

      An active orthotic hand with two degrees of freedom was developed in this thesis. Its main body was made of polypropylene and the actuator is a light-weight RC servo motor. For better control, two types of logic controls, namely, on-off and finite state controls are implemented for users with different EEG detection rate.

      Besides, a mechanical stimulator was set on the orthotic hand and it stimulates the subject’s palm to enhance the event-related desynchronization of  wave by using the principle of stochastic resonance. Finally, clinical trials on seven normal subjects were performed to investigate the factors, namely, right or left hand imaginary task and wearing of orthotic hand which affect the success rate of orthosis operation. The result analyzed by two-way ANOVA indicates that right or left imaginary may affect the EEG detection rate and the average EEG detection rate of the non-habitual-handed imagination is higher than those of habitual-handed about 11.3% under  level of 0.1. Although wearing of orthotic hand has no statistical meaning in ANOVA analysis, its average EEG detection rate is higher than those of orthotic hand free about 6.2%.

      Compared with previous work, the new orthotic hand has two advantages: light weight and low disturbance to EEG acquisition although the average success rate of operation was low. Further study on combining  wave and biofeedback training might improve the success rate.

    目 錄 摘 要 i Abstract ii 誌 謝 iv 目 錄 v 圖目錄 viii 符號表 xi 第一章 緒 論 1  1-1 研究背景 1   1-1-1 腦電圖 2   1-1-2 隨機共振法 4  1-2 文獻回顧 5   1-2-1 人腦電腦介面 5   1-2-2 義肢輔具 7  1-3 研究動機與目的 10  1-4 本文架構 11 第二章 方法與實驗 12  2-1 硬體機構設計 12   2-1-1 義手機構各部元件 13   2-1-2 運動模型分析 23  2-2 訊號處理與控制系統 25   2-2-1 腦波訊號處理 25   2-2-2 控制介面 27   2-2-3 控制模式 28   2-2-4 控制邏輯 29  2-3 實驗設計 32   2-3-1 受測者資料 32   2-3-2 實驗器材 33   2-3-3 實驗步驟 35  2-4 統計分析 39 第三章 結 果 40  3-1 系統測試 40   3-1-1 硬體實現 40   3-1-2 位置控制 42   3-1-3 力量控制 45   3-1-4 抓握控制實驗 47  3-2 訊號處理 49   3-2-1 腦波處理 49   3-2-2 刺激器訊號 53  3-3 控制邏輯 54   3-3-1 開關控制邏輯 54   3-3-2 有限狀態控制邏輯 58  3-4 人體實驗 59   3-4-1 無生物回授實驗 59   3-4-2 生物回授實驗 62  3-5 統計分析 63 第四章 討 論 66  4-1 硬體改善與比較 66  4-2 控制邏輯 68  4-3 人體實驗 69   4-3-1 生物回授變因 69   4-3-2 左右側想像變因 71   4-3-3 實驗設計 72 第五章 結論與建議 74  5-1 結論 74  5-2 建議 75 參考文獻 76 作者簡介 79

    [1] J. R. Wolpaw, N. Birbaumer, W. J. Heetderks, D. J. McFarland, P. H. Peckham, G. Schalk, E. Donchin, L. A. Quatrano, C. J. Robinson, T. M. Vaughan, “Brain-Computer Interface Technology: A review of the first international meeting,” IEEE Trans. Rehab. Eng., Vol. 8, pp. 164-173, 2000.
    [2] P. J. Kyberd, J.L. Pons, “A Comparison of the Oxford and Manus Intelligent Hand prostheses,” IEEE Inter. Conference on Robotic & Automation, 2003.
    [3] G. Pfurtscheller, C. Neuper, “Motor Imagery and Direct Brain-Computer Communication,” IEEE Neural System and Rehab.Eng., Vol. 89, No. 7, pp. 1123-1134, 2001.
    [4] E.Manjarrez, O. Diez-Martinez, I. Mendez, A. Flores, “Stochastic Resonance in Human EEG Activity Elicited by Mechanical Tactile Stimuli,” Neuroscience Letters, Vol. 324, pp. 313-216, 2002.
    [5] T. Chiou, Y. Faye, Magee, N. Kevin, Tuel, M. Stephen, Robinson, R. Lawrence, Krouskop, A. Thomas, Nelson, R. Maureen, Moss, Frank, “Augmented Sensory Nerve Action Potentials during Distant Muscle Contraction,” Physical Medicine & Rehabilitation, Vol. 76, pp. 14-18, 1997.
    [6] G. Pfurtscheller, C. Neuper, D. Flotzinger, M. Pregenzer, “EEG-based discrimination between imagination of right and left hand movement,” Electroencephalography and clinical Neurophysiology, pp. 642-651, 1997.
    [7] B. Kotchoubey, H. Schleichert, W. Lutzenberger, N. Birbaumer, “A New Method for Self-regulation of slow cortical potentials in a timed paradigm,” Appl. Psychophys. Biofeedback, Vol. 22, pp. 77-93, 1997.
    [8] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, T. M. Vaughan, “Brain-Computer Interface for Communication and control,” Clin. Neurophysiol., Vol. 113, pp. 767-791, 2002.
    [9] N.Birbaumer, A. Kubler, N. Ghanayim, T. Hinterberger, J. Perelmouter, J. Kaiser, I. Iverson, B. Kotchoubey, N. Neumann, H. Flor, “The Tought Translation Device (TTD) for Completerly Paralyzed Patients,” IEEE Trans. Rehab. Eng., Vol. 8, pp. 190-193, 2000.
    [10] M. M. Moore, “Real-World Applications for Brain-Computer Interface Technology,” IEEE Trans. Rehab. Eng., Vol. 11, pp. 162-165, 2003.
    [11] K. Tanaka, K. Matsunaga, H. O. Wang, “Electroencephalogram-Based Control of an Electric Wheelchair,” IEEE Trans. Robotics., Vol. 21, pp. 762-766, 2005.
    [12] 王政道, 朱銘祥, 林宙晴, “運用波為控制源之研究,” 中華民國八十七年醫學工程科技研討會論文集, pp. 3-4., 1998.
    [13] 陳志瑋, 朱銘祥, 林宙晴, “類神經網路作即時波鑑別之研究,” 中華民國生物醫學工程科技研討會論文集, pp.48, 2001.
    [14] 莊舜龍, 朱銘祥, 林宙晴, “比較適應消除法和拉式運算法對於消除腦波中眨眼雜訊之效果,” 中華民國生物醫學工程科技研討會論文集, 2004.
    [15] 徐振煒, “應用隨機共振法強化事件相關去同步現象,” 國立成功大學機械工程研究所碩士論文, 2005.
    [16]http://www.healthcare.ottobock.com/info_download/sites/arm_o.php.
    [17] M. C. Carrozza, G.. Cappiello, L. Beccai, F. Zaccone, S. Micera, P. Dario, “Design Methods For Innovative Hand Prostheses,” Proceedings of 26th Annual International Conference of IEEE EMBS, pp. 4345-4348, 2004.
    [18] J. L. Pons, E. Rocon, R. Ceres, D. Reynaerts, B. Saro, S. Levin, W. V. Moorleghem, “The MANUS-HAND Dextrous Robotics Upper Limb Prosthesis: Mechanical and Manipulation Aspects,” Autonomous Robots, pp. 143-163, 2004.
    [19] 方振隆, “以腦波控制之主動式義手,” 國立成功大學機械工程研究所碩士論文, 2004.
    [20] FSR Technical Specifications, Interlink Electronics Inc., California, U.S.A., 1989.
    [21]_http://www.rcdream.net/document/showtopic.asp?menuL=2&subLID=29&T_ID=173
    [22] http://en.wikipedia.org/wiki/Brodmann_area
    [23] G. Townsend, B. Graimann, G. Pfurtscheller, “Continuous EEG Classification During Motor Imegery─Simulation of an Asynchronous BCI,” IEEE Trans. Rehab. Eng., Vol.12, pp. 258-265, 2004.
    [24] A. Stancak, G. Pfurtscheller, “The effects of handedness and type of movement on the contralateral preponderance of -rhythm desynchronisation,” Clin. Neurophysiology, Vol. 99, pp. 174-182, 1996.

    下載圖示 校內:2011-07-28公開
    校外:2011-07-28公開
    QR CODE