簡易檢索 / 詳目顯示

研究生: 陳育同
Chen, Yu-Tong
論文名稱: 氮化物工作電極應用於光電化學電解水產氫特性之研究
Hydrogen Generation by Photoelectrolysis of Water Using III-Nitride Semiconductor as Working Electrodes
指導教授: 許進恭
Sheu, Jinn-Kong
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 95
中文關鍵詞: 光電化學氮化鎵壓電場離子佈植
外文關鍵詞: Photoelectrochemical, GaN, Piezoelectric field, Ion implantation
相關次數: 點閱:78下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 過去幾年來人類大量使用石化燃料排放溫室氣體,除了造成石化礦產資源短缺和價格攀升之外,地球環境也深深地受到溫室氣體影響波即到下一世代人類的生活。因此除了找尋其他替代能源之外,其使用上也必須是能夠再生利用且對環境友善的,氫能就是解決的方法之一。
    本研究主要探討應用三族氮化物半導體當作光電化學電解水工作電極的相關特性,內容包含元件材料特性、磊晶結構、電化學分析與半導體製程等相關理論的結合與應用,目的就是希望提升元件的化學穩定性以及照光時分解水分子生成氫氣與氧氣的速率。
    縱使氮化鎵材料對於酸鹼溶液具有良好的抗腐蝕特性且該材料能隙大小也符合水分子的氧化還原電位,然而其對應所能吸收的入射光限於紫外光波段,占總太陽光譜約僅5%。於是我們於元件結構上摻雜過度元素錳,目的是藉此方式於禁止帶中生成雜質能階,增加可見光波段的吸。最後確實成功改善錳摻雜元件的電性之外,也實現元件對長波段的吸收提升產氫速率。
    氮化鎵材料與藍寶石基板之間晶格不匹配相當嚴重,常會造成磊晶結構為了化解內應力而產生線缺陷。為此已經發展出一套選擇性成長的磊晶技術,透過遮罩的方式產生側向成長阻止線缺陷向上延伸。我們應用離子佈植的方式進行選擇性成長規則型圖案結構,目的是增加半導體與電解液的接觸面積。然而佈植區域的晶格缺陷會降低元件品質與工作效率,因此我們以蝕刻方式成功改善晶格造成的缺陷,並且之中也探討規則形圖案的排列方式對光電流的影響。
    最後我們於InGaN-based元件上成長一層氮化(鋁)鎵材料,由於磊晶層之間晶格不匹配產生的內應力造成能帶傾斜,而應用於工作電極有助於電子電洞對的分離。我們分別比較氮化鎵材料與氮化鋁鎵對InGaN-based元件的影響,實驗成功運用材料內應力產生壓電極化助於載子的萃取,並且提升光電流數值約100倍。之中我們也觀察元件表面的腐蝕情況,了解光電解對表面磊晶層的影響。

    關鍵字:光電化學; 氮化鎵; 壓電場; 離子佈植

    Recently, the tremendous demand and increasing usage of the fossil fuel have contributed to high cost and depletion of fossil reserves. In addition, it would result in expense of environment and human health. Actually, large productions amount of carbon dioxide, methane and chlorofluorocarbons (CFCs) lead to global warming and greenhouse effect. Therefore, it is urgent to discover other renewable energy resource, which is friendly to environment. Hydrogen generation is a solution and a key issue for this thesis.
    In this thesis, we discuss the application of III-Nitride semiconductor on photoelectrolysis of water. We considered properties of materials, epitaxial structures, electrochemical analysis and semiconductor process. We purpose to make the enhancement of hydrogen generation rate and chemical reliability.
    Gallium nitride materials possess appropriate band edges for redox potential of water splitting and anti-corrosion in aqueous solutions. However, the corresponding light wavelength to gallium nitride energy band gap is 365nm, contributing only about 5% of the solar spectrum can be absorbed. As a result, we demonstrated and improve the quality of Mn doped GaN as photoelectrode, and extend the absorption spectrum of GaN to visible light.
    Owing to the severe lattice miss match between GaN and sapphire substrate, it exists threading dislocation in crystal structure. We successfully demonstrated patterned devices by selective ion implantation and regrowth without dielectric mask. In second part, we applied period patterned structures to increase reaction area in electrolyte. However, the ion implantation destroyed lattice structure and decreased the device quality. Accordingly, we recover the lattice defects by dry etching effectively. And we also realized the effects of pattern arrays on photocurrent density.
    Finally, we achieve enhanced photocurrent density in InGaN-based PEC electrodes, and accomplish zero-bias photoelectrolysis of water under visible illumination. We successfully grew n-(Al)GaN materials upon InGaN absorption layer by MOVPE, and engineer surface band bent which result in internal electric field and facilitating hydrogen generation directly. The photocurrent and hydrogen generation rate in n-AlGaN caped device is about 100 times than that in reference n-InGaN working electrode under zero bias. Actually, we also discussed the corrosion phenomena on devices surface through SEM images.

    Key words: Photoelectrochemical; GaN; Piezoelectric field; Ion implantation

    摘要 I Abstract III 致謝 V 圖目錄 IX 表目錄 XII 第一章 序論 1 1.1前言 1 1.2氫能的演變 2 1.3動機與實驗目的 6 Reference in Chapter 1 8 第二章 理論基礎 10 2.1半導體物理與元件 10 2.1.1半導體材料與能帶形成 10 2.1.2半導體能態與載子濃度 17 2.1.3 氮化(鋁,銦)鎵材料特性 18 2.1.4 極化電場 20 2.2電化學理論基礎 23 2.2.1電化學電位與參考電極 23 2.2.2半導體-電解液接面 26 2.2.3氫析出與過電位 31 2.2.4光腐蝕 34 2.2.5太陽光譜與PEC效率換算 35 2.3光電化學量測方法 37 2.3.1 實驗架設 37 2.3.2 試片製程與外觀 38 2.3.3電流-電壓特性曲線 41 Reference in Chapter 2 44 第三章 利用GaN:Mn工作電極進行光電解水產氫 47 3.1簡介 47 3.2實驗方法 48 3.3量測結果與討論 51 3.3.1暗態電流與照光電流分析 51 3.3.2元件光穿透與光響應頻譜 54 Reference in Chapter 3 57 第四章 應用佈植GaN成長圖案化工作電極於光電化學產氫之探討 59 4.1簡介 59 4.1.1動機 59 4.1.2文獻回顧 60 4.2實驗方法 61 4.2.1元件結構 61 4.2.2實驗條件與架構 66 4.3量測結果與討論 66 4.3.1光反射頻譜 66 4.3.2暗態與照光PEC電壓對電流特性曲線量測 68 4.3.3陰極激發放光頻譜分析 68 4.3.4調整磊晶成長壓力及PEC量測結果分析 72 Reference in Chapter 4 77 第五章 應用壓電效應於光電化學工作電極對電解水產氫效率之提升 79 5.1簡介 79 5.2實驗方法 81 5.3量測結果與討論 83 5.3.1照光電流與暗態電流特性曲線 83 5.3.2工作電極反應前後表面狀態 85 5.3.3光電流轉換效率 88 Reference in Chapter 5 90 第六章 結論與未來展望 92 6.1總結 92 6.2未來工作 94 Publication List 95

    Reference in Chapter 1
    [1] M. I. Hoffert, "Farewell to Fossil Fuels?," Science, vol. 329, pp. 1292-1294, 2010.
    [2] S. Pacala and R. Socolow, "Stabilization wedges: solving the climate problem for the next 50 years with current technologies," science, vol. 305, pp. 968-972, 2004.
    [3] M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, "Solar cell efficiency tables (version 39)," Progress in Photovoltaics: Research and Applications, vol. 20, pp. 12-20, 2012.
    [4] A. Luque and A. Martí, "The intermediate band solar cell: progress toward the realization of an attractive concept," Adv. Mater., vol. 22, pp. 160-174, 2010.
    [5] A. Marti and A. Luque, "Intermediate band solar cells," Advances in Science and Technology, vol. 74, pp. 143-150, 2011.
    [6] M. Sayed, J. H. Jefferson, A. B. Walker, and A. G. Cullis, "Molecular dynamics simulations of implantation damage and recovery in semiconductors," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 102, pp. 218-222, 1995.
    [7] J. Cai, X. Hu, and N. Chen, "Multiple lattice inversion approach to interatomic potentials for compound semiconductors," J. Phys. Chem. Solids, vol. 66, pp. 1256-1263, 2005.
    [8] C. Kittel and P. McEuen, Introduction to solid state physics vol. 7: Wiley New York, 1996.
    [9] M. Tao, D. Udeshi, N. Basit, E. Maldonado, and W. P. Kirk, "Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium," Appl. Phys. Lett., vol. 82, pp. 1559-1561, 2003.
    [10] A. Luque and A. Martí, "Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels," Phys. Rev. Lett., vol. 78, pp. 5014-5017, 1997.
    [11] J. McDougall and E. C. Stoner, "The computation of Fermi-Dirac functions," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 237, pp. 67-104, 1938.
    [12] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, et al., "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 2000.
    [13] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys., vol. 94, p. 3675, 2003.
    [14] A. Martí, C. Tablero, E. Antolin, A. Luque, R. Campion, S. Novikov, et al., "Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641-644, 2009.

    Reference in Chapter 2
    [1] M. Tao, D. Udeshi, N. Basit, E. Maldonado, and W. P. Kirk, "Removal of dangling bonds and surface states on silicon (001) with a monolayer of selenium," Appl. Phys. Lett., vol. 82, pp. 1559-1561, 2003.
    [2] J. Cai, X. Hu, and N. Chen, "Multiple lattice inversion approach to interatomic potentials for compound semiconductors," J. Phys. Chem. Solids, vol. 66, pp. 1256-1263, 2005.
    [3] M. Sayed, J. H. Jefferson, A. B. Walker, and A. G. Cullis, "Molecular dynamics simulations of implantation damage and recovery in semiconductors," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, vol. 102, pp. 218-222, 1995.
    [4] J. McDougall and E. C. Stoner, "The computation of Fermi-Dirac functions," Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 237, pp. 67-104, 1938.
    [5] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys., vol. 94, p. 3675, 2003.
    [6] S. Nakamura, M. Senoh, and T. Mukai, "P-GaN/N-InGaN/N-GaN double-heterostructure blue-light-emitting diodes," Jpn. J. Appl. Phys., Part 2, vol. 32, pp. L8-L8, 1993.
    [7] J. K. Sheu, S. J. Chang, C. Kuo, Y. K. Su, L. Wu, Y. Lin, et al., "White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors," Photonics Technology Letters, IEEE, vol. 15, pp. 18-20, 2003.
    [8] P. Waltereit, O. Brandt, A. Trampert, H. T. Grahn, J. Menniger, M. Ramsteiner, et al., "Nitride semiconductors free of electrostatic fields for efficient white light-emitting diodes," Nature, vol. 406, pp. 865-868, 2000.
    [9] J. Lee, X. Li, X. Ni, U. Ozgur, H. Morkoc, T. Paskova, et al., "On carrier spillover in c- and m-plane InGaN light emitting diodes," Appl. Phys. Lett., vol. 95, pp. 201113-3, 2009.
    [10] S. C. Ling, T. C. Lu, S. P. Chang, J. R. Chen, H. C. Kuo, and S. C. Wang, "Low efficiency droop in blue-green m-plane InGaN/GaN light emitting diodes," Appl. Phys. Lett., vol. 96, pp. 231101-3, 2010.
    [11] T. Zhu and R. A. Oliver, "Unintentional doping in GaN," PCCP, vol. 14, pp. 9558-9573, 2012.
    [12] V. Fiorentini, F. Bernardini, and O. Ambacher, "Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures," Appl. Phys. Lett., vol. 80, pp. 1204-1206, 2002.
    [13] I. Vurgaftman and J. R. Meyer, "Band parameters for nitrogen-containing semiconductors," J. Appl. Phys., vol. 94, pp. 3675-3696, 09/15/ 2003.
    [14] H. Zhang, E. J. Miller, E. T. Yu, C. Poblenz, and J. S. Speck, "Measurement of polarization charge and conduction-band offset at InxGa1−xN/GaN heterojunction interfaces," Appl. Phys. Lett., vol. 84, pp. 4644-4646, 2004.
    [15] F. Renner, P. Kiesel, G. H. Dohler, M. Kneissl, C. G. Van de Walle, and N. M. Johnson, "Quantitative analysis of the polarization fields and absorption changes in InGaN/GaN quantum wells with electroabsorption spectroscopy," Appl. Phys. Lett., vol. 81, pp. 490-492, 2002.
    [16] E. F. Schubert, T. Gessmann, and J. K. Kim, Light emitting diodes vol. 13: Wiley, 2005.
    [17] M. Nič, J. Jirát, B. Košata, A. Jenkins, and A. McNaught, "IUPAC Compendium of Chemical Terminology, 2nd edn. (the Gold Book)," ed: Oxford, 2009.
    [18] D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, Electrochemistry for Chemists. New York: Wiley-Interscience, 2010.
    [19] R. van de Krol and M. Grätzel, "Photoelectrochemical Hydrogen Production," ed: Springer, 2012, pp. 75-77.
    [20] S. M. Sze, Physics of Semiconductor Devices. New York: Wiley.
    [21] M. Green, "Electrochemistry of the Semiconductor‐Electrolyte Electrode. I. The Electrical Double Layer," J. Chem. Phys., vol. 31, p. 200, 1959.
    [22] H. Von Helmholtz, "Studies of electric boundary layers," Wied. Ann, vol. 7, pp. 337-382, 1879.
    [23] H. Gerischer, "The impact of semiconductors on the concepts of electrochemistry," Electrochim. Acta, vol. 35, pp. 1677-1699, 1990.
    [24] R. van de Krol and M. Grätzel, "Photoelectrochemical Hydrogen Production," ed: Springer, 2012, pp. 30-34.
    [25] J. N. Chazalviel, "Experimental techniques for the study of the semiconductor-electrolyte interface," Electrochim. Acta, vol. 33, pp. 461-476, 1988.
    [26] H. O. Finklea, Semiconductor Electrodes, Studies in Physical and Theoretical Chemistry vol. 5. NewYork: Elsevier, 1988.
    [27] G. V. Hansson and R. I. Uhrberg, "Photoelectron spectroscopy of surface states on semiconductor surfaces," Surf. Sci. Rep., vol. 9, pp. 197-292, 1988.
    [28] H. Lüth, Surfaces and interfaces of solid materials. Berlin, Heidelberg: Springer, 1997.
    [29] J. A. Dean, Lange's handbook of chemistry. New York: McGraw 1985.
    [30] T. Rotter, D. Mistele, J. Stemmer, F. Fedler, J. Aderhold, J. Graul, et al., "Photoinduced oxide film formation on n-type GaN surfaces using alkaline solutions," Appl. Phys. Lett., vol. 76, pp. 3923-3925, 2000.
    [31] J. H. Leach, U. Ozgur, and H. Morkoc, "Evolution of surface morphology of GaN thin films during photoelectrochemical etching," Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol. 25, pp. 1832-1835, 2007.
    [32] T. Bak, J. Nowotny, M. Rekas, and C. C. Sorrell, "Photo-electrochemical hydrogen generation from water using solar energy. Materials-related aspects," Int. J. Hydrogen Energy, vol. 27, pp. 991-1022, 2002.
    [33] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, et al., "Efficiency of solar water splitting using semiconductor electrodes," Int. J. Hydrogen Energy, vol. 31, pp. 1999-2017, 2006.
    [34] S. Y. Liu, Y. C. Lin, J. C. Ye, S. J. Tu, F. W. Huang, M. L. Lee, et al., "Hydrogen gas generation using n-GaN photoelectrodes with immersed Indium Tin Oxide ohmic contacts," Opt. Express, vol. 19, pp. A1196-A1201, 2011.
    [35] S. Y. Liu, J. K. Sheu, M. L. Lee, Y. C. Lin, S. J. Tu, F. W. Huang, et al., "Immersed finger-type indium tin oxide ohmic contacts on p-GaN photoelectrodes for photoelectrochemical hydrogen generation," Opt. Express, vol. 20, pp. A190-A196, 2012.

    Reference in Chapter 3
    [1] A. Fujishima and K. Honda, "Electrochemical Photolysis of Water at a Semiconductor Electrode," Nature, vol. 238, pp. 37-38, 1972.
    [2] M. A. Gondal, A. Hameed, Z. H. Yamani, and A. Suwaiyan, "Laser induced photo-catalytic oxidation/splitting of water over α-Fe2O3, WO3, TiO2 and NiO catalysts: activity comparison," Chem. Phys. Lett., vol. 385, pp. 111-115, 2004.
    [3] K. Maeda, T. Takata, M. Hara, N. Saito, Y. Inoue, H. Kobayashi, et al., "GaN:ZnO Solid Solution as a Photocatalyst for Visible-Light-Driven Overall Water Splitting," J. Am. Chem. Soc., vol. 127, pp. 8286-8287, 2005.
    [4] X. Yang, A. Wolcott, G. Wang, A. Sobo, R. C. Fitzmorris, F. Qian, et al., "Nitrogen-Doped ZnO Nanowire Arrays for Photoelectrochemical Water Splitting," Nano Lett., vol. 9, pp. 2331-2336, 2009.
    [5] R. C. Kainthla, B. Zelenay, and J. O. M. Bockris, "Significant Efficiency Increase in Self‐Driven Photoelectrochemical Cell for Water Photoelectrolysis," J. Electrochem. Soc., vol. 134, pp. 841-845, 1987.
    [6] A. J. Nozik and R. Memming, "Physical Chemistry of Semiconductor−Liquid Interfaces," J. Phys. Chem., vol. 100, pp. 13061-13078, 1996.
    [7] I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, "Direct water photoelectrolysis with patterned n-GaN," Appl. Phys. Lett., vol. 91, p. 093519, 2007.
    [8] O. Jani, I. Ferguson, C. Honsberg, and S. Kurtz, "Design and characterization of GaN/InGaN solar cells," Appl. Phys. Lett., vol. 91, pp. 132117-3, 2007.
    [9] J. Li, J. Y. Lin, and H. X. Jiang, "Direct hydrogen gas generation by using InGaN epilayers as working electrodes," Appl. Phys. Lett., vol. 93, pp. 162107-3, 2008.
    [10] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells," Appl. Phys. Lett., vol. 96, pp. 052110-3, 2010.
    [11] K. Fujii, S. Nakamura, S. Yokojima, T. Goto, T. Yao, M. Sugiyama, et al., "Photoelectrochemical Properties of InxGa1–xN/GaN Multiquantum Well Structures in Depletion Layers," J. Phys. Chem. C, vol. 115, pp. 25165-25169, 2011.
    [12] N. A. Zdeně, k. Sofer, D. Sedmidubský, N. A. Ště, p. Huber, N. A. Jiř, et al., "Mn doped GaN thin films and nanoparticles," Int. J. Nanotechnol., vol. 9, p. 809, 2012.
    [13] S. Y. Liu, J. K. Sheu, Y. C. Lin, S. J. Tu, F. W. Huang, M. L. Lee, et al., "Mn-doped GaN as photoelectrodes for the photoelectrolysis of water under visible light," Opt. Express, vol. 20, pp. A678-A683, 2012.
    [14] M. Vaněček, A. Poruba, Z. Remeš, N. Beck, and M. Nesládek, "Optical properties of microcrystalline materials," J. Non-Cryst. Solids, vol. 227–230, Part 2, pp. 967-972, 1998.
    [15] Z. Sofer, D. Sedmidubský, Š. Huber, J. Hejtmánek, A. Macková, and R. Fiala, "Mn doped GaN thin films and nanoparticles," Int. J. Nanotechnol., vol. 9, pp. 809-824, 2012.
    [16] F. W. Huang, J. K. Sheu, M.-L. Lee, S.-J. Tu, W.-C. Lai, W.-C. Tsai, et al., "Linear photon up-conversion of 450 meV in InGaN/GaN multiple quantum wells via Mn-doped GaN intermediate band photodetection," Opt. Express, vol. 19, pp. A1211-A1218, 2011.
    [17] A. Martí, C. Tablero, E. Antolín, A. Luque, R. P. Campion, S. V. Novikov, et al., "Potential of Mn doped In1−xGaxN for implementing intermediate band solar cells," Sol. Energy Mater. Sol. Cells, vol. 93, pp. 641-644, 2009.

    Reference in Chapter 4
    [1] N. G. Weimann, L. F. Eastman, D. Doppalapudi, H. M. Ng, and T. D. Moustakas, "Scattering of electrons at threading dislocations in GaN," J. Appl. Phys., vol. 83, pp. 3656-3659, 1998.
    [2] S. Nakamura, "The Roles of Structural Imperfections in InGaN-Based Blue Light-Emitting Diodes and Laser Diodes," Science, vol. 281, pp. 956-961, 1998.
    [3] A. Kudo and Y. Miseki, "Heterogeneous photocatalyst materials for water splitting," Chem. Soc. Rev., vol. 38, pp. 253-278, 2009.
    [4] K. Maeda, K. Teramura, D. Lu, T. Takata, N. Saito, Y. Inoue, et al., "Photocatalyst releasing hydrogen from water," Nature, vol. 440, pp. 295-295, 2006.
    [5] J. Benton, J. Bai, and T. Wang, "Enhancement in solar hydrogen generation efficiency using a GaN-based nanorod structure," Appl. Phys. Lett., vol. 102, pp. 173905-4, 2013.
    [6] A. I. Hochbaum and P. Yang, "Semiconductor Nanowires for Energy Conversion," Chem. Rev., vol. 110, pp. 527-546, 2009.
    [7] D. Wang, A. Pierre, M. G. Kibria, K. Cui, X. Han, K. H. Bevan, et al., "Wafer-Level Photocatalytic Water Splitting on GaN Nanowire Arrays Grown by Molecular Beam Epitaxy," Nano Lett., vol. 11, pp. 2353-2357, 2011.
    [8] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. H. Kuo, C. S. Chang, et al., "ICP etching of sapphire substrates," Opt. Mater., vol. 27, pp. 1171-1174, 2005.
    [9] Y. P. Hsu, S. J. Chang, Y. K. Su, J. K. Sheu, C. T. Lee, T. C. Wen, et al., "Lateral epitaxial patterned sapphire InGaN/GaN MQW LEDs," J. Cryst. Growth, vol. 261, pp. 466-470, 2004.
    [10] B. Beaumont, P. Vennéguès, and P. Gibart, "Epitaxial Lateral Overgrowth of GaN," phys. stat. sol. (b), vol. 227, pp. 1-43, 2001.
    [11] T. Shang-Ju, L. Ming-Lun, Y.-H. Yeh, H. Feng-Wen, C. Po-Cheng, L. Wei-Chih, et al., "Improved Output Power of InGaN LEDs by Lateral Overgrowth on Si-Implanted n-GaN Surface to Form Air Gaps," IEEE, Journal of Quantum Electronics, vol. 48, pp. 1004-1009, 2012.
    [12] J. K. Sheu, S. J. Tu, M. L. Lee, Y. H. Yeh, C. C. Yang, F. W. Huang, et al., "Enhanced Light Output of GaN-Based Light-Emitting Diodes With Embedded Voids Formed on Si-Implanted GaN Layers," IEEE Electron Dev. Lett., vol. 32, pp. 1400-1402, 2011.
    [13] M. Usman, A. Nazir, T. Aggerstam, M. K. Linnarsson, and A. Hallén, "Electrical and structural characterization of ion implanted GaN," Nucl. Instrum. Methods Phys. Res., Sect. B, vol. 267, pp. 1561-1563, 2009.
    [14] T. Trupke, M. A. Green, and P. Würfel, "Improving solar cell efficiencies by up-conversion of sub-band-gap light," J. Appl. Phys., vol. 92, p. 4117, 2002.
    [15] J. K. Sheu, M. L. Lee, and W. C. Lai, "Effect of low-temperature-grown GaN cap layer on reduced leakage current of GaN Schottky diodes," Appl. Phys. Lett., vol. 86, pp. 052103-3, 2005.
    [16] S. Y. Liu, J. K. Sheu, J.-C. Ye, S. J. Tu, C.-K. Hsu, M. L. Lee, et al., "Characterization of n-GaN with Naturally Textured Surface for Photoelectrochemical Hydrogen Generation," J. Electrochem. Soc., vol. 157, pp. H1106-H1109, 2010.
    [17] T. Ogino and M. Aoki, "Mechanism of Yellow Luminescence in GaN," Jpn. J. Appl. Phys., vol. 19, pp. 2395-2405, 1980.

    Reference in Chapter 5
    [1] A. Bykhovski, B. Gelmont, M. Shur, and A. Khan, "Current-voltage characteristics of strained piezoelectric structures," J. Appl. Phys., vol. 77, pp. 1616-1620, 1995.
    [2] J. J. J. Wierer, A. J. Fischer, and D. D. Koleske, "The impact of piezoelectric polarization and nonradiative recombination on the performance of (0001) face GaN/InGaN photovoltaic devices," Appl. Phys. Lett., vol. 96, pp. 051107-3, 2010.
    [3] T. Takeuchi, S. Sota, M. Katsuragawa, M. Komori, H. Takeuchi, H. Amano, et al., "Quantum-confined stark effect due to piezoelectric fields in GaInN strained quantum wells," Jpn. J. Appl. Phys., vol. 36, pp. L382-L385, Apr 1 1997.
    [4] C. C. Yang, J. K. Sheu, X. W. Liang, M. S. Huang, M. L. Lee, K. H. Chang, et al., "Enhancement of the conversion efficiency of GaN-based photovoltaic devices with AlGaN/InGaN absorption layers," Appl. Phys. Lett., vol. 97, pp. 021113-3, 2010.
    [5] K. Fujii and K. Ohkawa, "Bias-Assisted H2 Gas Generation in HCl and KOH Solutions Using n-Type GaN Photoelectrode," J. Electrochem. Soc., vol. 153, pp. A468-A471, 2006.
    [6] K. Fujii, T. K. Karasawa, and K. Ohkawa, "Hydrogen gas generation by splitting aqueous water using n-type GaN photoelectrode with anodic oxidation," Jpn. J. Appl. Phys., vol. 44, pp. L543-L545, 2005.
    [7] M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, T. Yao, et al., "Photoelectrochemical reaction and H2 generation at zero bias optimized by carrier concentration of n-type GaN," J. Chem. Phys., vol. 126, pp. 054708-7, 2007.
    [8] S. Yotsuhashi, M. Deguchi, H. Hashiba, Y. Zenitani, R. Hinogami, Y. Yamada, et al., "Enhanced CO2 reduction capability in an AlGaN/GaN photoelectrode," Appl. Phys. Lett., vol. 100, pp. 243904-3, 2012.
    [9] S. Yotsuhashi, H. Hashiba, M. Deguchi, Y. Zenitani, R. Hinogami, Y. Yamada, et al., "Highly efficient photochemical HCOOH production from CO2 and water using an inorganic system," AIP Advances, vol. 2, pp. 042160-5, 2012.
    [10] J. Li, J. Y. Lin, and H. X. Jiang, "Direct hydrogen gas generation by using InGaN epilayers as working electrodes," Appl. Phys. Lett., vol. 93, pp. 162107-3, 2008.
    [11] K. Aryal, B. N. Pantha, J. Li, J. Y. Lin, and H. X. Jiang, "Hydrogen generation by solar water splitting using p-InGaN photoelectrochemical cells," Appl. Phys. Lett., vol. 96, pp. 052110-3, 2010.
    [12] D. T. Sawyer, A. Sobkowiak, and J. L. Roberts, Electrochemistry for Chemists. New York: Wiley-Interscience, 2010.
    [13] M. Nič, J. Jirát, B. Košata, A. Jenkins, and A. McNaught, "IUPAC Compendium of Chemical Terminology, 2nd edn. (the Gold Book)," ed: Oxford, 2009.
    [14] A. B. Murphy, P. R. F. Barnes, L. K. Randeniya, I. C. Plumb, I. E. Grey, M. D. Horne, et al., "Efficiency of solar water splitting using semiconductor electrodes," Int. J. Hydrogen Energy, vol. 31, pp. 1999-2017, 2006.

    下載圖示 校內:2016-07-02公開
    校外:2016-07-02公開
    QR CODE