簡易檢索 / 詳目顯示

研究生: 王鴻益
Wang, Hone-Yat
論文名稱: 融鹽EMITFSI於有機溶劑中結構與性質之分子模擬
Molecular simulations of the structures and properties of EMITFSI in organic solvents
指導教授: 施良垣
Shy, Liang-Yuan
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2004
畢業學年度: 92
語文別: 中文
論文頁數: 60
中文關鍵詞: 融鹽動態模擬離子液體擴散導電
外文關鍵詞: dynamic simulation, molten salt, ionic liquid, conductivity, diffusion
相關次數: 點閱:71下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本篇以分子動力模擬方法研究融鹽1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide(簡稱EMITFSI) 於有機溶劑中之離子擴散、導電、配位及集結之性質,並與文獻上的實驗值比對。研究之溶劑包括高介電常數之ethylene carbonate(簡稱EC)、propylene carbonate(PC)、acrylnitrile(AN)與低介電常數之diethyl carbonate(簡稱DEC)。模擬之條件參考McEwen等之實驗參數,於濃度2 M,溫度300 K下進行。為了解溫度之效應,本篇亦模擬333 K時, EMITFSI於AN之導電性。本篇首先以均方位移圖求得擴散係數,並以Nernst-Einstein公式估計導電度。再以自由EMI+離子出現之機率修正導電度值,並由徑向分佈函數計算EMI+離子周圍之溶劑及TFSI-離子總數。
      模擬之導電度值與實驗值接近。模擬結果顯示,當溶劑之分子量愈小,其擴散係數愈大,使得與其配位之EMI+與TFSI-離子愈容易擴散。與EMI+離子配位之TFSI-離子數約為4至5個,幾乎與溶劑種類無關,但EMI+與TFSI-離子周圍之溶劑配位數則與溶劑分子量有關。當溶劑為AN及DEC時,EMI+與TFSI-離子間會形成明顯的氫鍵,但在EC與PC中則無。當溫度升高時,較多之溶劑分子取代TFSI-離子而與EMI+離子形成配位。

      Molecular dynamics simulations have been used to study the diffusivity, conductivity, coordination and association properties of molten salt 1-ethyl-3-methylimidazo lium bis(trifluoromethylsulfonyl)imide (EMITFSI) in organic solvents. The results were compared with the literature data. The solvents under study includes those with high dielectric constant:ethylene carbonate (EC), propylene carbonate (PC), acrylnitrile (AN) and low one:diethyl carbonate (DEC). Simulations, which were based on McEween’s experimental parameters, were conducted at 2 M concentration and 300 K. To understand the influence of temperature on the conductivity property, simulations were also performed for EMITFSI in AN at 333 K. The diffusion coefficients were computed firstly from the plot of the mean-square displacement to estimate the specific conducitivities via Nernst-Einstein equation. The computed values were then revised with the probability of free EMI+ ion. The average numbers of solvent and TFSI- ion around EMI+ ion were computed from the radial distribution function.
      The simulated conductivities were close to those from the experiment. It was found that, the smaller the molecular weight of solvent is, the larger the diffusion coefficient becomes, which fasten the diffusion of EMI+ and TFSI- ions. The number of coordinating TFSI- ions around EMI+ ion is about 4 to 5, which is nearly independent of the solvent type. But the solvation number for both EMI+ and TFSI- ions depend on the size of the solvent. Strong hydrogen bonding between EMI+ and TFSI- ions was found in AN and DEC, but not for EC and PC. As the temperature increases, more solvent molecules replace TFSI- ions to coordinate with EMI+ ion.

    中文摘要………………………………………………………………Ⅲ 英文摘要………………………………………………………………Ⅳ 本文目錄………………………………………………………………Ⅴ 表目錄…………………………………………………………………Ⅵ 圖目錄…………………………………………………………………Ⅶ 第 一 章 緒論………………………………………………………1 第 二 章 電腦模擬…………………………………………………9 2-1 模擬方法…………………………………………………9 2-2 力場………………………………………………………10 2-3 模擬系統…………………………………………………13 2-4 相關數據的計算…………………………………………15 第 三 章 結果與討論………………………………………………18 3-1 徑向分佈函數與累計原子………………………………18 3-2 擴散係數與導電度的關係………………………………54 3-3 離子群聚的分析…………………………………………61 第 四 章 結論………………………………………………………66 參考文獻………………………………………………………………68

    1.P. Bonhôte, A.-P. Dias, N. Papageogiou, K. Kalyanasundaram and M.Grätzel, Inorg. Chem., 1996, 35, 1168.
    2.Wilkes, J. S.;Zaworotko, M. J. J. Mol. Chem. Soc., Chem. Commun. 1992, 965.
    3.A. B. McEwen, S. F. McDevitt, and V. R. Koch, J. Electrochem. Soc., 1997, 144, L84.
    4.Alan B. McEwen, Helen L. Ngo, Karen LeCompte, and Jay L. Goldman, J.Electrochem. Soc., 1999, 146(5), 1687.
    5.Akihiro Noda, Kikuko Hayamizu, and Masayoshi Watanabe, J. Phys.Chem. B, 2001, 605, 4603.
    6.Hesse, M.; Meier. H.; Zeeh. B., Spektroskopische Methoden in der organischen Chemie, 2nd ed., 1984.
    7.J. F. Huang, P. Y. Chen, I. W. Sun and S. P. Wang, Inorg. Chim. Acta, 2001, 320, 7.
    8.A. Haas, Ch. Klare, P. Bruckmann, C. Krüger, Y,-H. Tsay, and F. Aubke, Inorg. Chem., 1996, 35, 1918.
    9.Teodora, D. N. and Suter, U. W. Macromolecules, 1985, 18, 1206.
    10.Baskir, J. N. and Suter, U. W. Macromolecules, 1988, 21, 1877.
    11.Discover user guide part 1, Biosym/MSI Technologies, 1996, V 4.0.
    12.M. L. T. Asaki, A. Redondo, T. A. Zawodzinski, and A. J. Taylor, J. Chem. Phys., 2002, 116, 10377.
    13.T. P. Iglesias and J. Peón Fernández, J. Chem. Thermodynamics.,2001, 33, 1375.
    14.J. Fuller, R. T. Carlin, H. C. De Long and D. Haworth, “Structure of 1-ethyl-3-methylimidazolium hexafluorophosphate:model for room temperature molten salts”, J. Chem. Soc., Chem. Commun. 1994, 299.
    15.范駿威, 碩士論文, 融鹽EMIBF4及EMI(SO2CF3)2結構與性質之分子模擬, 國立成功大學, 2002.
    16.de Andrade, J.; Böes, E. S.; Stassen, H. J. Phys. Chem. B. 2002, 106, 3546.
    17.Hanke, C. G.; Price, S. L.; Lynden-Bell, R. M. Mol. Phys. 2001, 99, 801.

    下載圖示 校內:立即公開
    校外:2004-09-01公開
    QR CODE