簡易檢索 / 詳目顯示

研究生: 葉芊芊
Yeh, Chien-Chien
論文名稱: 包覆聚左旋乳酸微球微針之長期有效性與安全性
Long-term efficacy and safety of microneedles containing poly-L-lactic acid microspheres
指導教授: 陳美瑾
Chen, Mei-Chin
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2024
畢業學年度: 112
語文別: 中文
論文頁數: 163
中文關鍵詞: 聚左旋乳酸膠原蛋白新生異物反應皮膚彈性傷口修復
外文關鍵詞: Poly-L-lactic acid, Collagen regeneration, Foreign body reaction, Skin elasticity, Wound healing
相關次數: 點閱:29下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚左旋乳酸(poly-L-lactic acid, PLLA)可在生物體內引發異物反應刺激自體膠原新生,最具代表性的產品為Sculptra,但若注射至皮膚中的深度不正確或是過於聚集皆容易產生丘疹、結節等不良事件發生。本研究將PLLA微球包覆進玻尿酸微針(PLLA MP-MN),利用微針將PLLA均勻分散在真皮層中以避免注射深度不一或過於集中,同時微針穿刺可在皮膚表面形成機械性損傷並藉由傷口修復過程快速刺激膠原蛋白沈積。使用不含PLLA之玻尿酸微針(HA MN)最佳化微針穿刺頻率及施打片數,於大鼠實驗中確認以四天穿刺一次共施打4片微針,不僅不會對皮膚造成傷害並能在真皮淺層誘導最明顯的膠原蛋白新生。大鼠之中長期有效性及安全性實驗中,將PLLA MP-MN和HA MN與皮內注射(ID) PBS、PLLA MP和Sculptra進行比較,在實驗第8週可發現PLLA MP-MN及HA MN在真皮淺層微針穿刺區域皆可觀察到明顯膠原纖維新生,而在PLLA組之微球周圍可觀察到異物反應引起之膠原沈積,值得注意的是在Sculptra ID中發現由於PLLA過於聚集,導致發炎情形相對嚴重,於大鼠皮膚表面觀察到結節,進而造成肉芽腫之不良症狀。第8週時HA MN及PLLA MP-MN相較PBS ID誘導第三型膠原再生非常明顯(p < 0.01),亦觀察到皮膚彈性明顯增加(p < 0.01),而在第20週HA MN機械刺激膠原新生效果不顯著,新生之第三型膠原逐漸轉為成熟的第一型膠原,反觀PLLA ID、Sculptra ID和PLLA MP-MN則因PLLA逐漸刺激膠原新生在第三型膠原有顯著增加之情形(p < 0.01),且相較於PBS ID及HA MN在皮膚彈性上有明顯提升(p < 0.01)。本研究之PLLA MP-MN可有效避免因注射PLLA不均勻所引起的不良症狀,還可在治療初期藉由微針機械刺激及中後期PLLA引發的異物反應,使膠原新生及皮膚彈性達到長期有效之提升與改善,有潛力成為新一代抗老化之微侵入式療法。

    Poly-L-lactic acid (PLLA) can induce foreign body reaction and stimulate collagen regeneration in the body. In this study, we encapsulate PLLA into hyaluronic acid microneedles (PLLA MP-MN), using microneedles to evenly disperse PLLA in the dermis to avoid incorrect injection depths or over-concentration that can lead to adverse events such as papules and nodules. Additionally, microneedle punctures create mechanical injuries on the skin surface, stimulating collagen deposition through the wound healing process. In the long-term efficacy and safety experiments, PLLA MP-MN and HA MN could induce collagen regeneration in the superficial dermal microneedle puncture areas through mechanical stimulation and significantly induced type-III collagen regeneration compared to PBS ID at week 8. However, we observed severe inflammation due to excessive PLLA aggregation led to nodule formation on the skin surface, causing adverse symptoms such as granulomas in the Sculptra ID group. At week 20, type-III collagen induced by microneedle mechanical stimulation gradually matured into type-I collagen. Conversely, PLLA ID, Sculptra ID, and PLLA MP-MN, which still stimulated collagen production through PLLA, showed significant increases in type-III collagen and improved skin elasticity compared to PBS ID and HA MN. Therefore, we demonstrate that PLLA MP-MN can effectively avoid adverse symptoms caused by uneven injections and achieves long-term efficacy in collagen production and skin elasticity.

    摘要I Abstract XVI 致謝 XVII 目錄 XVIII 表目錄 XXII 圖目錄 XXIII 第一章 緒論 1 1.1. 研究動機 1 1.2. 皮膚組織結構1 1.2.1. 皮膚膠原蛋白型態 4 1.3. 皮膚老化機制 6 1.3.1. 皮膚老化造成膠原蛋白組成及含量之變化 7 1.4. 經皮藥物微針傳遞系統 9 1.4.1. 傷口癒合與膠原蛋白新生之關聯 10 1.4.2. 微針刺激膠原新生 13 1.4.2.1. 金屬微針 15 1.4.2.2. 玻尿酸微針 18 1.5. 真皮填補技術 24 1.5.1. 自體刺激膠原蛋白新生之真皮填補劑-聚左旋乳酸 26 1.5.1.1. 異物反應機制 27 1.5.1.2. 異物反應之炎性細胞辨識 28 1.5.2. 已上市之聚左旋乳酸產品- Sculptra 31 1.5.2.1. Sculptra 之副作用 33 1.6. 研究目的 35 1.7. 研究架構 38 第二章 實驗材料及方法 39 2.1. 實驗藥品 39 2.2. 實驗耗材與動物 40 2.3. 儀器設備 41 2.4. 微針製備 42 2.4.1. 玻尿酸微針製程 43 2.4.2. 含PLLA微球之微針製程 45 2.5. 微針包覆PLLA微球定量分析 46 2.5.1. Coumarin 6-loaded PLLA MP檢量線 46 2.5.2. PLLA MP-MN定量 47 2.5.3. PLLA MP-MN體外活體大鼠傳遞效率分析 47 2.6. 微針穿刺對皮膚刺激性之測試 49 2.6.1. 評估不同的微針施打頻率之皮膚傷口癒合程度 49 2.7. 施打不同玻尿酸微針片數之有效性分析 51 2.7.1. 大鼠皮膚之Genipin標記 52 2.7.2. 大鼠皮膚組織石蠟包埋 53 2.7.3. 大鼠皮膚組織化學染色 55 2.7.4. 大鼠皮膚組織化學染色之膠原蛋白半定量 57 2.7.5. 大鼠皮膚組織膠原蛋白定量 57 2.7.5.1. 第一型膠原蛋白定量分析 58 2.7.5.2. 第三型膠原蛋白定量分析 60 2.7.5.3. 3D數位病理分析 61 2.8. PLLA MP-MN應用於活體大鼠之長期安全及有效性分析 61 2.8.1. 大鼠皮膚彈性測試 64 2.8.2. 大鼠皮膚炎症反應判斷 65 第三章 結果與討論 67 3.1. 微針製備 67 3.1.1. PLLA微球微針於活體大鼠傳遞效率分析 68 3.2. 微針穿刺對皮膚刺激性測試 69 3.3. 施打不同玻尿酸微針片數之有效性分析 74 3.3.1. H&E組織染色結果分析 75 3.3.2. 馬森三色組織染色之膠原蛋白定性結果分析 77 3.3.3. 天狼星紅組織染色–第一型和第三型膠原蛋白定性分析 77 3.3.4. 第一型和第三型膠原蛋白之半定量分析 81 3.3.5. 3D數位病理分析 82 3.3.6. 大鼠皮膚組織內之膠原蛋白定量分析 84 3.4. PLLA MP-MN應用於活體大鼠之長期有效性及安全性分析結果 85 3.4.1. H&E組織染色結果分析 89 3.4.2. 大鼠皮膚組織之炎症反應判斷 94 3.4.3. 馬森三色組織染色之膠原蛋白定性結果分析 100 3.4.4. 天狼星紅組織染色–第一型和第三型膠原蛋白定性分析 105 3.4.5. 大鼠皮膚組織內之膠原蛋白定量分析 109 3.4.6. 大鼠皮膚彈性測試結果分析 113 第四章 結論 116 第五章 參考文獻 118 附錄一 127 附錄二 128 附錄三 131 附錄四 132 附錄五 134

    [1] 張芷綺碩士, 包覆聚左璇乳酸微球之雙層是玻尿酸微針應用於協同刺激膠原蛋白新生, 國立成功大學化學工程學系, 2023.
    [2] Ramadon, D., et al., Enhancement strategies for transdermal drug delivery systems: Current trends and applications. Drug delivery and translational research: p. 1-34, 2021.
    [3] Kolarsick, P.A., M.A. Kolarsick, and C. Goodwin, Anatomy and physiology of the skin. Journal of the Dermatology Nurses' Association, 3(4): p. 203-213, 2011.
    [4] Shirshin, E.A., et al., Two-photon autofluorescence lifetime imaging of human skin papillary dermis in vivo: assessment of blood capillaries and structural proteins localization. Scientific reports, 7(1): p. 1171, 2017.
    [5] Delgado-Gonzalo, R., et al. Evaluation of accuracy and reliability of PulseOn optical heart rate monitoring device. in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, 2015.
    [6] Wietecha, M.S., W.L. Cerny, and L.A. DiPietro, Mechanisms of vessel regression: toward an understanding of the resolution of angiogenesis. New perspectives in regeneration: p. 3-32, 2013.
    [7] Cen, L., et al., Collagen tissue engineering: development of novel biomaterials and applications. Pediatric research, 63(5): p. 492-496, 2008.
    [8] Reilly, D.M. and J. Lozano, Skin collagen through the lifestages: Importance for skin health and beauty. Plast Aesthet Res, 8(2): p. 10.20517, 2021.
    [9] Amirrah, I.N., et al., A comprehensive review on collagen type I development of biomaterials for tissue engineering: From biosynthesis to bioscaffold. Biomedicines, 10(9): p. 2307, 2022.
    [10] Singh, D., V. Rai, and D.K. Agrawal, Regulation of collagen I and collagen III in tissue injury and regeneration. Cardiology and cardiovascular medicine, 7(1): p. 5, 2023.
    [11] Cheng, W., et al., The content and ratio of type I and III collagen in skin differ with age and injury. African Journal of Biotechnology, 10(13): p. 2524-2529, 2011.
    [12] Kahan, V., et al., Stress, immunity and skin collagen integrity: evidence from animal models and clinical conditions. Brain, behavior, and immunity, 23(8): p. 1089-1095, 2009.
    [13] Zhang, Y., et al., In vivo inducing collagen regeneration of biodegradable polymer microspheres. Regenerative Biomaterials, 8(5): p. rbab042, 2021.
    [14] Klein, L. and J. ChandraRajan, Collagen degradation in rat skin but not in intestine during rapid growth: effect on collagen types I and III from skin. Proceedings of the National Academy of Sciences, 74(4): p. 1436-1439, 1977.
    [15] Lee, H., Y. Hong, and M. Kim, Structural and functional changes and possible molecular mechanisms in aged skin. International journal of molecular sciences, 22(22): p. 12489, 2021.
    [16] McCullough, J.L. and K.M. Kelly, Prevention and treatment of skin aging. Annals of the New York Academy of Sciences, 1067(1): p. 323-331, 2006.
    [17] Poon, F., S. Kang, and A.L. Chien, Mechanisms and treatments of photoaging. Photodermatology, photoimmunology & photomedicine, 31(2): p. 65-74, 2015.
    [18] Shin, J.-W., et al., Molecular mechanisms of dermal aging and antiaging approaches. International journal of molecular sciences, 20(9): p. 2126, 2019.
    [19] Qin, Z., R. Balimunkwe, and T. Quan, Age‐related reduction of dermal fibroblast size upregulates multiple matrix metalloproteinases as observed in aged human skin in vivo. British Journal of Dermatology, 177(5): p. 1337-1348, 2017.
    [20] Quan, T., et al., Elevated matrix metalloproteinases and collagen fragmentation in photodamaged human skin: impact of altered extracellular matrix microenvironment on dermal fibroblast function. The Journal of investigative dermatology, 133(5): p. 1362, 2013.
    [21] Fisher, G.J., J. Varani, and J.J. Voorhees, Looking older: fibroblast collapse and therapeutic implications. Archives of dermatology, 144(5): p. 666-672, 2008.
    [22] Zorina, A., et al., Molecular mechanisms of changes in homeostasis of the dermal extracellular matrix: both involutional and mediated by ultraviolet radiation. International Journal of Molecular Sciences, 23(12): p. 6655, 2022.
    [23] Aldawood, F.K., A. Andar, and S. Desai, A comprehensive review of microneedles: Types, materials, processes, characterizations and applications. Polymers, 13(16): p. 2815, 2021.
    [24] Lyu, S., et al., Going below and beyond the surface: Microneedle structure, materials, drugs, fabrication, and applications for wound healing and tissue regeneration. Bioactive Materials, 27: p. 303-326, 2023.
    [25] Peng, T., et al., Microneedles for enhanced topical treatment of skin disorders: applications, challenges, and prospects. Engineering, 2023.
    [26] Martin, P., Wound healing--aiming for perfect skin regeneration. Science, 276(5309): p. 75-81, 1997.
    [27] Gurtner, G.C., et al., Wound repair and regeneration. Nature, 453(7193): p. 314-321, 2008.
    [28] Darby, I.A. and T.D. Hewitson, Fibroblast differentiation in wound healing and fibrosis. International review of cytology, 257: p. 143-179, 2007.
    [29] Guo, S.a. and L.A. DiPietro, Factors affecting wound healing. Journal of dental research, 89(3): p. 219-229, 2010.
    [30] Kandhwal, M., et al., Role of matrix metalloproteinase in wound healing. American journal of translational research, 14(7): p. 4391, 2022.
    [31] Rzhevskiy, A.S., et al., Microneedles as the technique of drug delivery enhancement in diverse organs and tissues. Journal of controlled release, 270: p. 184-202, 2018.
    [32] McCrudden, M.T., et al., Microneedle applications in improving skin appearance. Experimental dermatology, 24(8): p. 561-566, 2015.
    [33] Schmitt, L., et al., Comprehensive molecular characterization of microneedling therapy in a human three‐dimensional skin model. PLoS One, 13(9): p. e0204318, 2018.
    [34] Spataro, E.A., K. Dierks, and P.J. Carniol, Microneedling-associated procedures to enhance facial rejuvenation. Facial Plastic Surgery Clinics, 30(3): p. 389-397, 2022.
    [35] Zhou, S., et al., New insights into balancing wound healing and scarless skin repair. Journal of Tissue Engineering, 14: p. 20417314231185848, 2023.
    [36] Fernandes, D. and M. Signorini, Combating photoaging with percutaneous collagen induction. Clinics in dermatology, 26(2): p. 192-199, 2008.
    [37] Aust, M., et al., Percutaneous collagen induction–regeneration in place of cicatrisation? Journal of plastic, reconstructive & aesthetic surgery, 64(1): p. 97-107, 2011.
    [38] Bukhari, S.N.A., et al., Hyaluronic acid, a promising skin rejuvenating biomedicine: A review of recent updates and pre-clinical and clinical investigations on cosmetic and nutricosmetic effects. International journal of biological macromolecules, 120: p. 1682-1695, 2018.
    [39] Papakonstantinou, E., M. Roth, and G. Karakiulakis, Hyaluronic acid: A key molecule in skin aging. Dermato-endocrinology, 4(3): p. 253-258, 2012.
    [40] Mendoza‐Muñoz, N., et al., Trends in biopolymer science applied to cosmetics. International Journal of Cosmetic Science, 45(6): p. 699-724, 2023.
    [41] Juncan, A.M., et al., Advantages of hyaluronic acid and its combination with other bioactive ingredients in cosmeceuticals. Molecules, 26(15): p. 4429, 2021.
    [42] Essendoubi, M., et al., Human skin penetration of hyaluronic acid of different molecular weights as probed by Raman spectroscopy. Skin Research and Technology, 22(1): p. 55-62, 2016.
    [43] Hans, N. and T. Sakuma, Introduction: What Is Hyaluronic Acid Filler? Minimally Invasive Aesthetic Procedures: A Guide for Dermatologists and Plastic Surgeons: p. 261-269, 2020.
    [44] Wang, F., et al., In vivo stimulation of de novo collagen production caused by cross-linked hyaluronic acid dermal filler injections in photodamaged human skin. Archives of dermatology, 143(2): p. 155-163, 2007.
    [45] Lee, H., et al., Dissolving biopolymer microneedle patches for the improvement of skin elasticity. Journal of Industrial and Engineering Chemistry, 111: p. 200-210, 2022.
    [46] Jang, M., et al., Dissolving microneedle with high molecular weight hyaluronic acid to improve skin wrinkles, dermal density and elasticity. International Journal of Cosmetic Science, 42(3): p. 302-309, 2020.
    [47] Ahn, C.S. and B.K. Rao, The life cycles and biological end pathways of dermal fillers. Journal of cosmetic dermatology, 13(3): p. 212-223, 2014.
    [48] Haddad, S., et al., Evaluation of the biostimulatory effects and the level of neocollagenesis of dermal fillers: a review. International Journal of Dermatology, 61(10): p. 1284-1288, 2022.
    [49] Johl, S.S. and R.A. Burgett, Dermal filler agents: a practical review. Current opinion in ophthalmology, 17(5): p. 471-479, 2006.
    [50] Rivers, J.K., Incidence and treatment of delayed‐onset nodules after VYC filler injections to 2139 patients at a single Canadian clinic. Journal of Cosmetic Dermatology, 21(6): p. 2379-2386, 2022.
    [51] Oh, S., et al., Poly-L-lactic acid fillers improved dermal collagen synthesis by modulating m2 macrophage polarization in aged animal skin. Cells, 12(9): p. 1320, 2023.
    [52] Stein, P., et al., The biological basis for poly-L-lactic acid-induced augmentation. Journal of dermatological science, 78(1): p. 26-33, 2015.
    [53] Goldberg, D., et al., Single‐arm study for the characterization of human tissue response to injectable poly‐L‐lactic acid. Dermatologic Surgery, 39(6): p. 915-922, 2013.
    [54] Fitzgerald, R., et al., Physiochemical characteristics of poly-L-lactic acid (PLLA). Aesthetic surgery journal, 38(suppl_1): p. S13-S17, 2018.
    [55] Kim, Y.K., E.Y. Chen, and W.F. Liu, Biomolecular strategies to modulate the macrophage response to implanted materials. Journal of Materials Chemistry B, 4(9): p. 1600-1609, 2016.
    [56] Capuani, S., et al., Advanced strategies to thwart foreign body response to implantable devices. Bioengineering & Translational Medicine, 7(3): p. e10300, 2022.
    [57] Veiseh, O., et al., Size-and shape-dependent foreign body immune response to materials implanted in rodents and non-human primates. Nature materials, 14(6): p. 643-651, 2015.
    [58] Akilbekova, D. and K.M. Bratlie, Quantitative characterization of collagen in the fibrotic capsule surrounding implanted polymeric microparticles through second harmonic generation imaging. PLoS One, 10(6): p. e0130386, 2015.
    [59] Chandorkar, Y., R. K, and B. Basu, The foreign body response demystified. ACS Biomaterials Science & Engineering, 5(1): p. 19-44, 2018.
    [60] Higgins, D.M., et al., Localized immunosuppressive environment in the foreign body response to implanted biomaterials. The American journal of pathology, 175(1): p. 161-170, 2009.
    [61] Patil, P., et al., Reactive oxygen species–degradable polythioketal urethane foam dressings to promote porcine skin wound repair. Science translational medicine, 14(641): p. eabm6586, 2022.
    [62] Boennelycke, M., et al., Tissue response to a new type of biomaterial implanted subcutaneously in rats. International urogynecology journal, 22: p. 191-196, 2011.
    [63] Thangavel, P., et al., Topical administration of pullulan gel accelerates skin tissue regeneration by enhancing collagen synthesis and wound contraction in rats. International journal of biological macromolecules, 149: p. 395-403, 2020.
    [64] Coelho, P.G.B., et al., Evaluation of dermal collagen stained with picrosirius red and examined under polarized light microscopy. Anais brasileiros de dermatologia, 93: p. 415-418, 2018.
    [65] Lam, S.M., B. Azizzadeh, and M. Graivier, Injectable poly-L-lactic acid (Sculptra): technical considerations in soft-tissue contouring. Plastic and reconstructive surgery, 118(3S): p. 55S-63S, 2006.
    [66] Danny Vleggaar, M. and U.B. MD, Facial enhancement and the European experience with Sculptra™(poly-l-lactic acid). Journal of Drugs in Dermatology, 3(5): p. 542-547, 2004.
    [67] Schierle, C.F. and L.A. Casas, Nonsurgical rejuvenation of the aging face with injectable poly-L-lactic acid for restoration of soft tissue volume. Aesthetic surgery journal, 31(1): p. 95-109, 2011.
    [68] 舒顏萃植入劑仿單,香港高德美有限公司台灣分公司,衛署醫器輸字第021227號, 2018 Apr 19.
    [69] Oh, H., et al., Comparative evaluation of safety and efficacy of a novel hyaluronic acid-polynucleotide/poly-L-lactic acid composite dermal filler. Aesthetic Plastic Surgery, 45: p. 1792-1801, 2021.
    [70] Dunn, A., et al., Nodules on the Anterior Neck Following Poly-L-lactic Acid Injection. Cutis, 109(6): p. E15-E17, 2022.
    [71] Modarressi, A., C. Nizet, and T. Lombardi, Granulomas and nongranulomatous nodules after filler injection: different complications require different treatments. Journal of Plastic, Reconstructive & Aesthetic Surgery, 73(11): p. 2010-2015, 2020.
    [72] Fitzgerald, R. and D. Vleggaar, Facial volume restoration of the aging face with poly‐l‐lactic acid. Dermatologic therapy, 24(1): p. 2-27, 2011.
    [73] Jin, Y.-T., et al., Cosmetic materials-induced foreign body granuloma at the lower lip. Journal of Dental Sciences, 17(1): p. 586, 2022.
    [74] Rad, Z.F., P.D. Prewett, and G.J. Davies, An overview of microneedle applications, materials, and fabrication methods. Beilstein Journal of Nanotechnology, 12(1): p. 1034-1046, 2021.
    [75] Ahmed, R., et al., Genipin, a natural blue colorant precursor: Source, extraction, properties, and applications. Food Chemistry: p. 137498, 2023.
    [76] Neves, M.I.L., et al., Milk colloidal system as a reaction medium and carrier for the natural blue colorant obtained from the cross-linking between genipin and milk proteins. Innovative Food Science & Emerging Technologies, 61: p. 102333, 2020.
    [77] Yu, Y., et al., Genipin-cross-linked hydrogels based on biomaterials for drug delivery: A review. Biomaterials science, 9(5): p. 1583-1597, 2021.
    [78] Picrosirius red stain kit protocal, BIOTnA Biotech.
    [79] Chuang, F.-J., et al., Enhanced skin neocollagenesis through the transdermal delivery of poly-L-lactic acid microparticles by using a needle-free supersonic atomizer. Biomaterials Advances, 154: p. 213619, 2023.
    [80] Rat Collagen Type-I (Col I) ELISA Kit, Shanghai Coon Koon Biotech Co., Ltd.
    [81] Rat Collagen Type-III (Col III) ELISA Kit, Shanghai Coon Koon Biotech Co., Ltd.
    [82] Lowe, N.J., C.A. Maxwell, and R. Patnaik, Adverse reactions to dermal fillers. Dermatologic surgery, 31: p. 1626-1633, 2005.
    [83] Przekora, A., A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro? Cells, 9(7): p. 1622, 2020.

    無法下載圖示 校內:2029-08-13公開
    校外:2029-08-13公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE