| 研究生: |
林家慷 Lin, Jia-Kang |
|---|---|
| 論文名稱: |
研究空間緩變條件下的高效率共振四波混頻 High conversion efficiency based on spatial adiabatic condition of resonant four-wave mixing |
| 指導教授: |
陳泳帆
Chen, Yong-Fan |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 物理學系 Department of Physics |
| 論文出版年: | 2015 |
| 畢業學年度: | 103 |
| 語文別: | 中文 |
| 論文頁數: | 60 |
| 中文關鍵詞: | 空間緩變條件 、雙Λ型四波混頻 、電磁波引發透明 |
| 外文關鍵詞: | Four-wave mixing, Spatial adiabatic condition, EIT |
| 相關次數: | 點閱:79 下載:12 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文探討滿足空間域緩變條件(adiabatic condition)的雙Λ型四波混頻(Four-wave mixing)。先前的理論研究已顯示,由量子干涉產生的四波混頻系統,在兩個耦合光開啟的的情況下打入探測光,至少有百分之五十的能量損耗。但後來又有理論指出,只要系統滿足緩變條件,系統的能量損耗可以被減少,以提高四波混頻的轉換效率。在本篇論文中,以電磁波引發透明 (Electromagnetically Induced Transparency, 簡 稱 EIT) 和二能階系統為基礎,討論雙Λ系統的緩變條件,最後以雙Λ系統進行將探測光波長從780 nm轉到795 nm的四波混頻實驗。在本實驗中,光學密度16且驅動光調變24 MHz時,我們得到了最大信號光穿透率為 28%
We study the resonant four-wave mixing (FWM) based on spatial adiabatic conditions. The intensities of both the coupling and driving laser beams vary spatially in the propagation direction of the probe laser beam. Theoretical calculations show that this FWM scheme can achieve a conversion efficiency of approximatively 96% when using a dense medium with an optical density. Finally, we successfully achieve the experiment of four-wave mixing which transform the 780 nm light beam to 795 nm.
[1] D. C. Burnham and D. L. Weinberg, Phys. Rev. Lett. 25, 84 (1970).
[2] V. Balić, D. A. Braje, P. Kolchin, G. Y. Yin, and S. E. Harris, Phys. Rev. Lett. 94, 183601 (2005).
[3] P. D. Maker and R. W. Terhune, Phys. Rev. 137, A801 (1965).
[4] M. G. Payne and L. Deng, Phys. Rev. A 65, 063806 (2002).
[5] Y. Wu and X. Yang, Phys. Rev. A 70, 053818 (2004).
[6] G. Wang, Y. Xue, J.-H. Wu, Z.-H. Kang, Y. Jiang, S.-S. Liu, and J.-Y. Gao, Opt. Lett. 35, 3778 (2010).
[7] B.-H. Wu, Study of transient effects from single-lambda to double-lambda system under the all-resonant condition, Master’s thesis, NTHU, 2014.
[8] S. E. Harris, J. E. Field, and A. Imamoğlu, Phys. Rev. Lett. 64, 1107 (1990).
[9] Y.-T. Liao, Theoretical studies of phase-dependent double-lambda EIT, Master’s thesis, NCKU, 2014.
[10] L. V. Hau, S. E. Harris, Z. Dutton, and C. H. Behroozi, Nature 397, 594 (1999).
[11] M. Fleischhauer and M. D. Lukin, Phys. Rev. Lett. 84, 5094 (2000).
[12] M. D. Lukin, S. F. Yelin, M. Fleischhauer, and M. O. Scully, Phys. Rev. A 60, 3225 (1999).
[13] S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin, Phys. Rev. Lett. 55, 48 (1985).
[14] C.-K. Chiu, Y.-H. Chen, Y.-C. Chen, I. A. Yu, Y.-C. Chen, and Y.-F. Chen, Phys. Rev. A 89, 023839 (2014).