簡易檢索 / 詳目顯示

研究生: 王耀塵
Wang, Yao-Chen
論文名稱: 化學機械平坦化製程之數值模擬與參數研究
Numerical Simulation and Process Parameter Study for Chemical Mechanical Planarization
指導教授: 楊天祥
Yang, Tian-Shiang
學位類別: 博士
Doctor
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 英文
論文頁數: 144
中文關鍵詞: 潤滑理論材料移除率多區段晶圓背壓接觸力學化學機械研磨研磨墊溝槽研磨液雜質濃度
外文關鍵詞: Chemical mechanical planarization, Slurry impurity, Grooved pads, Lubrication theory, Contact mechanics, Multi-zone wafer-back pressure, Material removal rate
相關次數: 點閱:139下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在超大型積體電路中,化學機械平坦化製程扮演著使晶圓金屬層和介電層平坦化的重要角色。在化學機械平坦化製程中,必須持續注入研磨液使晶圓表面產生一較軟的氧化水合層,再藉由晶圓與研磨墊間的相對運動移除晶圓表面材料。為了得到高穩定性與高效能的平坦化效果,我們往往需要在研磨墊上刻製溝槽以利研磨液之流動,並且幫助研磨液將晶圓磨除後的雜質順利排出,防止雜質堆積刮傷晶圓表面。此外,因為應力集中的影響,研磨時晶圓邊緣處的接觸應力遠比晶圓中心處的接觸應力高,如此的現象將造成晶圓研磨不均勻度的提高,甚至是晶圓的破裂。為了有效減輕晶圓邊緣處應力集中現象,多區段晶圓背壓分佈也已被應用在實際製程中。
    本論文主要分為兩大部份,第一部份將針對含溝槽之研磨墊,並且考慮研磨液化學活性對於材料移除率的影響,探討不同溝槽設計(包括溝槽寬度、長度及數目等)對於平坦材料移除率與其空間不均勻度的影響。由數值結果中我們發現,研磨墊溝槽的存在將增加流體壓力(吸力),研磨界面間接觸應力也將隨之增加,並因此提高晶圓局部材料移除率。而且,由於溝槽的存在,研磨界面間研磨液流量會提升,所以研磨液雜質濃度會降低。
    本論文的第二部份則探討利用多區段晶圓背壓分佈是否可有效地降低因為晶圓邊緣處應力集中影響所造成之材料移除率不均勻度。我們的數值結果指出,相較於均勻晶圓背壓,二區段晶圓背壓分佈可以改善晶圓邊緣處應力集中的情形,使得晶圓“可用”面積(定義為晶圓接觸應力不均勻度小於0.1%時的最大面積範圍)增加達12%之多。然而,使用三區段晶圓背壓分佈時,改善效果已不再那麼明顯。因此,若能有效的設計晶圓背壓分佈,將可以降低晶圓研磨時因為應力集中所造成的損壞。

    Chemical mechanical planarization (CMP) has played an enabling role in producing near-perfect planarity of interconnection and metal layers in ultra-large scale integrated (ULSI) devices. During CMP, a rotating wafer is pressed against a rotating pad, while a slurry is dragged into the pad–wafer interface. For stable and high performance of CMP, it is important to ensure uniform slurry flow at the pad–wafer interface, hence necessitating the use of grooved pads that help discharge debris and prevent subsequent particle loading effects. Furthermore, due to stress concentration, the interfacial contact stress near the wafer edge generally is much higher than that near the wafer center, resulting in spatially non-uniform material removal rate (MRR) and hence imperfect planarity of the wafer surface. In order to alleviate this problem, the use of multi-zone wafer back pressure profiles has been proposed.
    In the first part of this thesis, taking into account the dependence of local MRR on the slurry’s chemical activity, we examine the effects of pad groove design and various process parameters on the spatial average and non-uniformity of MRR. The numerical results indicate that the presence of pad grooves generally decreases the slurry impurity concentration, and increases the contact stress on the pad–wafer interface, so that the local MRR is increased. However, as a grooved pad has less contact area for effective interaction with the wafer surface, the average MRR may or may not be increased, depending upon the specific values of process parameters.
    In the second part of this thesis, for flat pads, we calculate the interfacial contact stress and slurry pressure distributions on the wafer surface produced by a multi-zone (i.e., piecewise constant) wafer-back pressure profile. In particular, the possibility of using a multi-zone wafer-back pressure profile to improve the contact stress and MRR uniformity is examined, by studying a particular case with realistic parameter settings. Our numerical results show that using a two-zone wafer-back pressure profile with “optimized” zonal sizes and pressures can increase the “usable” wafer surface area (within which the average contact stress non-uniformity is below 0.1%) by as much as 12%. Using an “optimized” three-zone wafer-back pressure profile, however, does not much further increase the usable wafer surface area. So, one may simply employ a wafer carrier that provides a two-zone wafer-back pressure profile, and use the theoretical model and numerical procedures devised in this thesis to estimate the “optimal” zonal sizes and pressures.

    摘要................................................................................................................................ I Abstract.......................................................................................................................III Acknowledgments.........................................................................................................V Contents ..................................................................................................................... VII List of Tables................................................................................................................IX List of Figures ...............................................................................................................X List of Acronyms.......................................................................................................XIV Notation and Symbols................................................................................................XV Chapter 1........................................................................................................................1 1.1 Motivation and Objectives...............................................................................1 1.2 Background Review for Pad Groove Modeling...............................................4 1.3 Background Review for Multi-Zone Wafer-Back Pressure Modeling ..........11 1.4 Outline of this Thesis .....................................................................................15 Chapter 2......................................................................................................................18 2.1 Contact Stress on the Pad–Wafer Interface....................................................19 2.2 Slurry Film Thickness Calculation ................................................................25 2.3 Fluid Pressure Calculation .............................................................................27 2.4 Numerical Method .........................................................................................29 2.5 Slurry Impurity Transport and MRR Calculations ........................................31 2.5.1 Slurry Impurity Transport Equation....................................................32 Chapter 3......................................................................................................................37 3.1 Flat Pads.........................................................................................................39 3.2 Grooved Pads.................................................................................................46 3.2.1 Solution Existence and Stability Issues ..............................................46 3.2.2 Slurry Flow Dynamics and Contact Stress Distribution .....................49 3.2.3 Dependence of the Averaged Fluid Pressure on Pad Groove Parameters...........................................................................................57 3.2.4 Dependence of the Mean Slurry Flow Rate on Pad Groove Parameters. .............................................................................................................59 3.2.5 Dependence of the Averaged Contact Stress on Pad Groove Parameters...........................................................................................63 3.3 Results of MRR Calculations.........................................................................66 3.3.1 Calibration of Parameter Values .........................................................66 3.3.2 Typical Results of Slurry Impurity Concentration and MRR for Flat and Grooved Pads. ..............................................................................68 3.3.3 Effects of Pad Groove Parameters on the Average Slurry Impurity Concentration and MRR. ....................................................................75 3.3.4 Effects of Parameters k, 0 C , and 1 C on the Average Slurry Impurity Concentration and MRR. ....................................................................80 Chapter 4......................................................................................................................84 4.1 Wafer Surface Displacement and Contact Stress Distribution...............85 4.2 Fluid Pressure Calculation .....................................................................89 4.3 Numerical Method .................................................................................91 Chapter 5......................................................................................................................92 5.1 Model Validation............................................................................................92 5.1.1 Comparison with FEM Results (No Slurry Flow) ..............................94 5.1.2 Comparison with Experiments (No Slurry Flow).............................101 5.1.3 Comparison with Experiments (with Slurry Flow)...........................103 5.2 “Optimization” of the Wafer-Back Pressure Profile ....................................107 5.2.1 “Optimal” Two-Zone Wafer-Back Pressure Profile..........................109 5.2.2 “Optimal” Three-Zone Wafer-Back Pressure Profile........................115 5.3 Comparison of the Results Produced by the Uniform and “Optimized” Multi-Zone Wafer-Back Pressure Profiles...................................................118 Chapter 6....................................................................................................................125 6.1 Pad Grooves Modeling ................................................................................125 6.2 Multi-Zone Wafer-Back Pressure Modeling................................................129 References..................................................................................................................132 Appendix Some References for Semiconductor Manufacturing Technologies .........138

    [1] Singh RK, Bajaj R (2002) Advances in chemical-mechanical planarization. MRS Bull 27:743–747

    [2] Patrick WJ, Guthrie WL, Standley CL, Schiable PM (1991) Application of chemical mechanical polishing to the fabrication of VLSI circuit interconnections. J Electrochem Soc 138:1778–1784

    [3] Muldowney GP, Hendron JJ, and Crkvenac TT. (2004) The impact of slurry backmixing in determining optimal CMP process condition. In Proceedings of the 2004 CMP-MIC Conference, Santa Clara, California, 24–26 February 2004, 224–231

    [4] Singh RK, Lee S-M, Choi K-S, Basim GB, Choi W, Chen Z, Moudgil BM (2002) Fundamentals of slurry design for CMP of metal and dielectric materials. MRS Bull 27:752–760

    [5] Moinpour M, Tregub A, Oehler A, Cadien K (2002) Advances in characterization of CMP consumables. MRS Bull 27:766–771

    [6] Edgar TF, Butler SW, Campbell WJ, Pfeiffer C, Bode C, Hwang SB, Balakrishnan KS, Hahn J (2000) Automatic control in microelectronic manufacturing: Practices, challenges, and possibilities. Automatica 36:1567–1603

    [7] Kao YC, Yu CC, Shen SH (2003) Robust operation of copper chemical mechanical polishing. Microelectron Eng 65:61–75

    [8] Doy TK, Seshimo K, Suzuki K, Philipossian A, Kinoshita M (2004) Impact of novel pad groove designs on removal rate and uniformity of dielectric and copper CMP. J Electrochem Soc 151:G196–G199

    [9] Rosales-Yeomans D, Doi T, Kinoshita M, Suzuki T, Philipossian A (2005) Effect of pad groove designs on the frictional and removal rate characteristics of ILD CMP. J Electrochem Soc 152:G62–G67

    [10] Eaton JK, Elkins CJ, Burton TM, Miyaji A, Coon DP (2003) Simulation method for CMP slurry flow with a grooved polishing pad. In: Proceedings of the 2003 CMP-MIC Conference, Marina Del Ray, California, 19-21 February 2003, 143–150

    [11] Muldowney GP, Tselepidakis DP (2004) A computational study of slurry flow in grooved CMP polishing pads. In: Proceedings of the 2004 CMP-MIC Conference, Marina Del Ray, California, 24–26 February 2004, 022504

    [12] Muldowney GP, James DB (2004) Characterization of CMP pad surface texture and pad–wafer contact. Mat Res Soc Symp Proc 816:147–158

    [13] Wang Y-C, Yang T-S (2007) Effects of pad grooves on chemical mechanical planarization. J Electrochem Soc 154:H486-H494

    [14] Wang Y-C, Yang T-S (2007) Modeling and calculation of slurry chemistry effects on chemical mechanical planarization with a grooved pad. Submitted in revised form to J Eng Math

    [15] Subramanian RS, Zhang L, Babu SV (1999) Transport phenomena in chemical mechanical polishing. J Electrochem Soc 146:4263–4272

    [16] Bakhtari K, Guldiken RO, Busnaina AA, Park J-G (2006) Experimental and analytical study of submicrometer particle removal from deep trenches. J Electrochem Soc 153:C603–C607

    [17] Lin J-F, Chern J-D, Chang Y-H, Kuo P-L. and Tsai M-S (2004) Analysis of the Tribological Mechanisms Arising in the Chemical Mechanical Polishing of Copper-Film Wafers. ASME J Tribol, 126:185–199

    [18] Lin J-F, Chern S-C, Ouyang Y-L, Tsai M-S (2006) Analysis of the Tribological Mechanisms Arising in the Chemical Mechanical Polishing of Copper-Film Wafers When Using a Pad With Concentric Grooves. ASME J Tribol 128:445–459

    [19] Sundararajan S, Thakurta DG, Schwendeman DW, Murarka SP, Gill WN (1999) Two-dimensional wafer-scale chemical mechanical planarization models based on lubrication theory and mass transport. J Electrochem Soc 146:1523-1528

    [20] Tichy J, Levert JA, Shan L, Danyluk S (1999) Contact mechanics and lubrication hydrodynamics of chemical mechanical polishing. J Electrochem Soc 146:1523–1528

    [21] Shan L, Levert J A, Meade L, Tichy J, Danyluk S (2000) Interfacial fluid mechanics and pressure prediction in chemical mechanical planarization. ASME J Tribol 122:539–543

    [22] Thakurta DG, Borst CL, Schwendeman DW, Gurtmann, RJ, Gill WN (2000) Pad porosity, compressibility and slurry delivery effects in chemical-mechanical planarization: modeling and experiments. Thin Solid Film 366:181–190

    [23] Harp SR, Salant RF (2001) An average flow model of rough surface lubrication with inter-asperity cavitation. ASME J Lubr Technol 123:134-143

    [24] Kim AT, Seok J, Tichy J, Cale TS (2003) A multiscale elastohydrodynamic contact model for CMP. J Electrochem Soc 150:G570-G576

    [25] Jin X, Keer LM, Wang Q (2005) A 3D simulation of CMP. J electrochem Soc 152:G7-G15

    [26] Higgs CF, III, Ng SH, Borucki L, Yoon I, Danyluk S (2005) A mixed-lubrication approach to predicting CMP fluid pressure modeling and experiments. J Electrochem Soc 152:G193-G198

    [27] Gitis NV, Xiao J, Kumar A, Sikder AK (2004) Advanced specification and tests of CMP retaining ring. In: Proceedings of the 2004 CMP-MIC Conference, Marina Del Ray, California, 24-26 February 2004, 252-255

    [28] Johnson KL (1985) Contact Mechanics. Cambridge University Press, Cambridge, UK, 41 and 104–106

    [29] Greenwood JA, Williamson JBP (1966) Contact of nominally flat surfaces. Proc R Soc London Ser A 295:300–319

    [30] Hamrock BJ, Schmid SR, Jacobson BO (2004) Fundamentals of Fluid Film Lubrication, 2nd edn. Marcel Dekker, Inc, New York, Chapter 7

    [31] Patir N, Cheng HS (1978) An average flow model for determining effects of three-dimensional roughness on partial hydrodynamic lubrication. ASME J Lubr Technol 100:12–17

    [32] Thagella S, Sikder AK, Kumar A (2004) Tribological issues and modeling of removal rate of low-k films in CMP. J Electrochem Soc 151:G205-G215

    [33] Shiu S-J, Yu C-C, Shen S-H (2004) Multivariable control of multizone chemical mechanical polishing. J Vac Sci Technol B 22:1679–1687

    [34] Preston FW (1927) The theory and design of plate glass polishing machines. J Soc Glass Technol 11:214–256

    [35] Runnels SR, Eyman M (1994) Tribological analysis of chemical-mechanical polishing. J Electrochem Soc 141:1698-1701

    [36] Runnels SR (1994) Feature-scale fluid-based erosion modeling for chemical-mechanical polishing. J Electrochem Soc 141:1900-1904

    [37] Tseng W-T, Wang Y-L (1997) Re-examination of pressure and speed dependences of removal rate during chemical-mechanical polishing processes. J Electrochem Soc 144:L15–L17

    [38] Tseng W-T, Chin J-H, Kang L-C (1999) A comparative study on the roles of velocity in the material removal rate during chemical mechanical polishing. J Electrochem Soc 146:1952–1959

    [39] Homma Y, Fukushima K, Kondo S, Sakuma N (2003) Effects of mechanical parameters on CMP characteristics analyzed by two-dimensional frictional force measurement. J Electrochem Soc 150:G751–G757

    [40] Homma Y (2006) Dynamical mechanism of chemical mechanical polishing analyzed to correct Preston’s empirical model. J Electrochem Soc 153:G587–G590

    [41] Seok J, Sukam CP, Kim AT, Tichy JA, and Cale TS (2004) Material removal model for chemical mechanical polishing considering wafer flexibility and edge effects. Wear, 257:496–508

    [42] Borucki LJ, Ng SH, Danyluk S (2005) Fluid pressures and pad topography in chemical mechanical planarization. J Electrochem Soc 152: G391-G397

    [43] Yen J-L, Chen Y-C, Chen K-S, Yang T-S (2006) Contact stress uniformity analysis for chemical mechanical polishing application (in Chinese). In: Proceedings of the 23rd National Conference on Mechanical Engineering, Yung Kang, Taiwan, 24-25 November 2006, C2-023

    [44] Tannehill JC, Anderson DA, and Pletcher RH (1997) Computational Fluid Mechanics and Heat Transfer, 2nd ed., Taylor & Francis, Philadephia, PA

    [45] Gerald C, and Wheatley PO (1999) Applied Numerical Analysis, 6th ed., Addison Wesley, Reading, MA, 48

    [46] Crandall SH, Dahl NC, and Lardner TJ (1978) An introduction to the mechanics of solids, 2nd ed., McGraw-Hill, Inc., New York, Section 8.5

    [47] Ng SH, Yoon I, Higgs CF, III, and Danyluk S (2004) Wafer-bending measurements in CMP. J Electrochem Soc 151: G819–G823

    [48] Ling FF, Lai WM, and Lucca DA (2002) Fundamentals of Surface Mechanics: with Applications, 2nd ed., Springer-Verlag, New York, Section 3.21

    下載圖示 校內:2009-08-11公開
    校外:2009-08-11公開
    QR CODE