| 研究生: |
江修毅 Chiang, Hsiu-Yi |
|---|---|
| 論文名稱: |
關於有限群中的共軛類數量 On the number of conjugacy classes in finite groups |
| 指導教授: |
黃世昌
Huang, Shih-Chang |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系應用數學碩博士班 Department of Mathematics |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 英文 |
| 論文頁數: | 53 |
| 中文關鍵詞: | 有限群 、共軛類數量 |
| 外文關鍵詞: | finite groups, number of conjugacy classes |
| 相關次數: | 點閱:171 下載:4 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在這篇論文中, 我們研究有限群的共軛類數量與有限群的階之關係. 我們特別著重在共軛類數量的界根據有限群的階. 我們會分別討論有限群以及不同類的有限群共軛類數量的上下界. 最後我們獲得了一個針對對稱群共軛類數量可能的上界.
In this thesis, we study the relation between the number of conjugacy classes of a finite group and its order. In particular, we are interested in the bounds for its order by the number of conjugacy classes. We will discuss the lower bounds and upper bounds for the number of conjugacy classes separately for the finite groups and further various classes of finite groups. At last, we obtain a possible upper bound for the number of conjugacy classes of symmetric groups.
[1] A. G. Aleksandrov and E. A. Komissarcik. Simple groups with a small number of conjugacy classes. J. Math. Sci., 37(2):917-924, 1987.
[2] M. Aschbacher and L. Scott. Maximal subgroups of finite groups. J. Algebra, 92(1):44-80, 1985.
[3] L. Babai. On the order of uniprimitive permutation groups. Ann. of Math., 113(3):553-568, 1981.
[4] L. Babai. On the order of doubly transitive permutation groups. Invent. Math., 65(3):473-484, 1982.
[5] B. Baumeister, A. Mar’oti, and H. P. Tong-Viet. Finite groups have more conjugacy classes. In Forum Math., volume 29, pages 259-275. De Gruyter, 2017.
[6] R Bercov and L Moser. On abelian permutation groups. Canadian Math. Bull., 8(5):627-630, 1965.
[7] E. A. Bertram. A density theorem on the number of conjugacy classes in finite groups. Pacific J. Math., 55(2):329-333, 1974.
[8] E. A. Bertram. On large cyclic subgroups of finite groups. Proc. Amer. Math. Soc., 56(1):63-66, 1976.
[9] E. A. Bertram. Large centralizers in finite solvable groups. Israel J. Math., 47(4):335-344, 1984.
[10] E. A. Bertram. Lower bounds for the number of conjugacy classes in finite solvable groups. Israel J. Math., 75(2-3):243-255, 1991.
[11] E. A. Bertram. Lower bounds for the number of conjugacy classes in finite groups. Contemp. Math., 402:95-117, 2006.
[12] E. A. Bertram. New reductions and logarithmic lower bounds for the number of conjugacy classes in finite groups. Bull. Aust. Math. Soc., 87(3):406-424, 2013.
[13] R. Brauer. On groups whose order contains a prime number to the first power i. Amer. J. Math., 64(1):401-420, 1942.
[14] R. Brauer. Representations of finite groups. lectures on modern mathematics, vol.i, 133-175, 1963.
[15] R. Brauer. Some applications of the theory of blocks of characters of finite groups. i. J. Algebra, 1(2):152-167, 1964.
[16] W. Burnside. On the theory of groups of finite order. Proc. London Math. Soc., 2(1):1-7, 1909.
[17] M. Cartwright. The number of conjugacy classes of certain finite groups. Quart. J. Math., 36(4):393-404, 1985.
[18] M. Cartwright. A bound on the number of conjugacy classes of a finite soluble group. J. London Math. Soc., 2(2):229-244, 1987.
[19] J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson. Atlas of finite groups. 1985.
[20] L. Dornhoff. Group Representation Theory: Modular Representation Theory, volume 2. M. Dekker, 1972.
[21] E. P. E Soares. Big primes and character values for solvable groups. J. Algebra, 100(2):305-324, 1986.
[22] P. Erdos and P. Turan. On some problems of a statistical group-theory. iv. Acta Math. Acad. Sci. Hungar, 19(3-4):413-435, 1968.
[23] M. Garonzi and A. Maroti. On the number of conjugacy classes of a permutation group. J. Combin. Theory Ser. A, 133:251-260, 2015.
[24] D. Gorenstein, R. Lyons, and R. Solomon. The classification of the finite simple groups: The generic case, stages 1-3a. Number 5. American Mathematical Soc., 1994.
[25] GAP Group et al. Gap-groups, algorithms, and programming, version 4.8. 10; 2018.
[26] G. H. Hardy and S. Ramanujan. Asymptotic formula in combinatory analysis. Proc. London Math. Soc., 2(1):75-115, 1918.
[27] H. Heineken. Nilpotent subgroups of finite soluble groups. Arch. Math., 56(5):417-423, 1991.
[28] L. Hethelyi and B. Kulshammer. On the number of conjugacy classes of a finite solvable group. Bull. London Math. Soc., 32(6):668-672, 2000.
[29] L. Hethelyi and B. K‥ulshammer. On the number of conjugacy classes of a finite solvable group ii. J. Algebra, 270(2):660-669, 2003.
[30] A. Jaikin-Zapirain. On the number of conjugacy classes in finite p-groups. J. London Math. Soc., 68(3):699-711, 2003.
[31] A. Jaikin-Zapirain. On two conditions on characters and conjugacy classes in finite soluble groups. J. Group Theory, 8(3):267-272, 2005.
[32] A. Jaikin-Zapirain. On the number of conjugacy classes of finite nilpotent groups. Adv. Math., 227(3):1129-1143, 2011.
[33] T. M. Keller. Lower bounds for the number of conjugacy classes of finite groups. In Math. Proc. Cambridge Philos. Soc., volume 147, pages 567-577. Cambridge University Press, 2009.
[34] T. M. Keller. Finite groups have even more conjugacy classes. Israel J. Math., 181(1):433-444, 2011.
[35] R. Kn‥orr, W. Lempken, and B. Thielcke. The S 3 -conjecture for solvabl groups. Israel J. Math., 91(1-3):61-76, 1995.
[36] L. F. Kosvintsev. Over the theory of groups with properties given over the centralizers of involutions. Sverdlovsk (Ural.), Summary thesis Doct, 1974.
[37] L. G. Kovacs and C. R. Leedham-Green. Some normally monomial p-groups of maximal class and large derived length. Quart. J. Math., 37(1):49-54, 1986.
[38] L. G. Kovacs and G. R. Robinson. On the number of conjugacy classes of a finite group. J. Algebra, 160:441-460, 1993.
[39] T. Y. Lam. Representations of finite groups: A hundred years, part i. Notices Amer. Math. Soc., 45(3):361-372, 1998.
[40] E. Landau. Uber die klassenzahl der bin‥aren quadratischen formen von negativer discriminante. Math. Ann., 56(4):671-676, 1903.
[41] M. W. Liebeck, C. E. Praeger, and J. Saxl. On the O’Nan-Scott theorem for finite primitive permutation groups. J. Austral. Math. Soc., 44(3):389-396, 1988.
[42] M. W. Liebeck and L. Pyber. Upper bounds for the number of conjugacy classes of a finite group. J. Algebra, 198(2):538-562, 1997.
[43] M. W. Liebeck and A. Shalev. Character degrees and random walks in finite groups of Lie type. Proc. London Math. Soc., 90(1):61-86, 2005.
[44] A. V. Lopez and J. M. Arregi. Conjugacy classes in sylow p-subgroups of GL(n, q). J. Algebra, 152(1):1-19, 1992.
[45] A. V. Lopez and J. V. Lopez. Classification of finite groups according to the number of conjugacy classes. Israel J. Math., 51(4):305-338, 1985.
[46] A. V. Lopez and J. V. Lopez. Classification of finite groups according to the number of conjugacy classes II. Israel J. Math., 56(2):188-221, 1986.
[47] G. Malle. Fast-einfache gruppen mit langen bahnen in absolut irreduzibler operation. J. Algebra, 300(2):655-672, 2006.
[48] A. Maroti. On elementary lower bounds for the partition function. Integers, 3(A10):2, 2003.
[49] A. Maroti. Bounding the number of conjugacy classes of a permutation group. J. Group Theory, 8(3):273-289, 2005.
[50] A. Maroti. A lower bound for the number of conjugacy classes of a finite group. Adv. Math., 290:1062-1078, 2016.
[51] G. A. Miller. Groups possessing a small number of sets of conjugate operators. Trans. Amer. Math. Soc., 20(3):260-270, 1919.
[52] G. A. Miller. Groups involving a small number of sets of conjugate operators. Proc. Nat. Acad. Sci. U. S. A., 30(11):359, 1944.
[53] A Moreto. Multiplicities of character degrees of finite groups. preprint, 2003.
[54] P. M. Neumann and M. R. Vaughan-Lee. An essay on bfc groups. Proc. London Math. Soc., 3(2):213-237, 1977.
[55] M. Newman. A bound for the number of conjugacy classes in a group.J. London Math. Soc., 1(1):108-110, 1968.
[56] V. A. Odincov and A. I. Starostin. Finite groups with 9 classes of conjugate elements. Ural. Gos. Univ. Mat. Zap, 10:114-134, 1976.
[57] J. Poland. Finite groups with a given number of conjugate classes. Canad. J. Math., 20:456-464, 1968.
[58] J. Poland. Two problems on finite groups with k conjugate classes. J. Austral. Math. Soc., 8(1):49-55, 1968.
[59] L. Pyber. Finite groups have many conjugacy classes. J. London Math. Soc., 2(2):239-249, 1992.
[60] U. Riese and P. Schmid. Real vectors for linear groups and the k(GV )-problem. J. Algebra, 267(2):725-755, 2003.
[61] P. P. Schmid. Signed permutation modules, singer cycles and class numbers. J. Group Theory, 14(2):175-199, 2011.
[62] W. R. Scott. Group theory. Courier Corporation, 2012.
[63] G. Sherman. A lower bound for the number of conjugacy classes in a finite nilpotent group. Pacific J. Math., 80(1):253-254, 1979.
[64] D. T. Sigley. Groups involving five complete sets of non-invariant conjugate operators. Duke Math. J., 1(4):477-479, 1935.
[65] J. V. Uspensky. Asymptotic formulae for numerical functions whichoccur in the theory of partitions. Bull. Russian Acad. Sci., 14(6):199-218, 1920.
[66] J. P. Zhang. Finite groups with many conjugate elements. J. Algebra, 170(2):608-624, 1994.