簡易檢索 / 詳目顯示

研究生: 曾相文
Tzeng, Hsiang-Wen
論文名稱: 以有限元素法分析凝固熱傳問題
Finite Element Analysis on Solidification and Heat Transfer Problems
指導教授: 趙隆山
Chao, Long-Sun
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 105
中文關鍵詞: 有限元素法凝固等效比熱/熱焓法
外文關鍵詞: Finite Element Method, Solidification, Specific Heat/Enthalpy Method
相關次數: 點閱:62下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相變化在凝固過程中為一個很重要的物理現象,當中所涉及的潛熱效應是需要被重視的。本文主要目的為利用有限元素法搭配不同處理潛熱的數值方法,來分析相變化熱傳問題中的溫度場分布。
    主要探討的凝固問題為一維史帝芬問題及二維Rathjen問題,並利用兩種處理潛熱的數值方法,等效比熱法與等效比熱/熱焓法來分析並比較其準確性與計算時間。分析結果發現,等效比熱/熱焓法不僅在計算時間上比等效比熱法還要快速,在處理潛熱效應也能提供更佳的準確性。
    對於不同形狀的元素、不同積分方式以及不同點數的積分點加以討論,更進一步比較其總誤差(total-error),可發現利用閉合式積分求解凝固問題效果並非理想,而利用四邊形元素求解凝固問題更能有效地得到比三角形元素還要好得精準度及誤差值。

    Phase-change in a solidification process is a very important physical phenomenon, in which the latent-heat effect cannot be ignored. In the thesis, the finite element method with different numerical schemes of handling the latent-heat effect is used to analyze the temperature distributions of phase-change heat transfer problems.

    In the work, the one-dimensional Stefan and the two-dimensional Rathjen problems are numerically studied. The effective specific heat and the specific heat/enthalpy methods are employed to deal with the latent-heat effect and the accuracy and CPU time of these schemes are compared and analyzed. From the results, it can be found that the latter method could solve the problems more accurately and faster than the former one.

    With different integration methods and numbers of integration points, the rectangle and triangle elements are utilized to study the phase-change problems. The total error is used to compare the solution accuracies of these schemes. The closed-form integration formula is not a good way applied to solve the solidification problems. The rectangle element could have the more accurate result than the triangle one.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VII 圖目錄 VIII 符號說明 XIII 第一章 緒論 1 1-1 文獻回顧 2 1-2 研究方法與目的 4 第二章 相變化熱傳問題之數學模式 5 2-1暫態線性熱傳問題 5 2-2 史帝芬問題(Stefan Problem) 6 2-2-1 等效比熱法(Effective specific heat method) 7 2-2-2 等效比熱/熱焓法 9 2-3 瑞特延問題(Rathjen Problem) 10 第三章 理論分析 16 3-1 有限元素法基本概念 16 3-2 加權殘值法(Weighted residuals approach) 18 3-2-1 加勒金法(Galerkin’s method) 19 3-3 元素與內插函數 20 3-3-1 基本元素形狀 20 3-3-2 三角形元素 21 3-3-3 四邊形元素 23 第四章 有限元素計算及數值分析 30 4-1 元素方程式 30 4-2 四邊形元素計算 32 4-3 三角形元素計算 35 4-3-1 三角形座標轉換 35 4-3-2 三角形高斯積分法 37 4-4 比熱項之元素矩陣 39 第五章 結果與討論 49 5-1 一維暫態熱傳問題 49 5-1-1 四邊形元素數值解與解析解比較 49 5-1-2 三角形元素數值解與解析解比較 49 5-2 史帝芬問題(Stefan Problem) 50 5-2-1 等效比熱法 50 5-2-1-1 四邊形元素數值解與解析解比較 50 5-2-1-2 三角形元素數值解與解析解比較 51 5-2-1-3四邊形元素與三角形元素比較 53 5-2-2 等效比熱/熱焓法 53 5-2-2-1 四邊形元素數值解與解析解比較 53 5-2-2-2 三角形元素數值解與解析解比較 53 5-2-2-3 四邊形元素與三角形元素比較 55 5-2-3 等效比熱法與等效比熱/熱焓法比較 55 5-2-3-1 運算時間測試 55 5-2-3-2 總誤差比較 56 5-2-3-3 潛熱釋放分析 56 5-2-4 瑞特延(Rathjen)問題 57 第六章 結論 102 參考文獻 103

    [1]R. Courant, "Variational methods for the solution of problems of equilibrium and vibrations," Bulletin of American Mathematical Society, vol. 49, pp. 1-23, 1943 1943.
    [2]M. J. Turner, "Stiffness and deflection analysis of complex structures," Journal of the Aeronautical Sciences (Institute of the Aeronautical Sciences), vol. 23, 2012.
    [3]R. W. Clough, "The finite element method in plane stress analysis," ASCE Conf. on Electronic Computation, vol. 2nd, 1960.
    [4]J. Greenstadt, "On the reduction of continuous problems to discrete form," IBM Journal of Research and Development, vol. 3, pp. 355-363, 1959.
    [5]O. C. Zienkiewicz and Y. K. Cheung, "Finite elements in the solution of field problems," The Engineer, 1965.
    [6]O. Zienkiewicz and Y. Cheung, "The finite element method in structural and continuum mechanicsMcGraw-Hill," New York, p. 33, 1967.
    [7]J. S. Hsiao, "An efficient algorithm for finite-difference analyses of heat transfer with melting and solidification," Numerical Heat Transfer, vol. 8, pp. 653-666, 1985/01/01 1985.
    [8]A. W. Date, "A Strong Enthalpy Formulation for the Stefan Problem," International Journal of Heat and Mass Transfer, vol. 34, pp. 2231-2235, 1991.
    [9]V. R. Voller and C. R. Swaminathan, "General Source-Based Method for Solidification Phase Change," Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, vol. 19, pp. 175-189, 1991.
    [10]T. C. Tszeng , Y.T. Im and S. Kobayashi, "Thermal Analysis of Solidification by the Temperature Recovery Method " International Journal of Machine Tools and Manufacture, vol. 29, pp. 107-120, 1989.
    [11]J. A. Dantzig, "Modelling liquid–solid phase changes with melt convection," International Journal for Numerical Methods in Engineering, vol. 28, pp. 1769-1785, 1989.
    [12]J. Stefan, "Ueber die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere," Annalen der Physik, vol. 278, pp. 269-286, 1891.
    [13]Rathjen K. A. and Jili L. M., "Heat conduction with melting or freezing in a corner," ASME Journal of Heat Transfer, vol. 93, 1971.
    [14]Y. Liu and L. Chao, "Modified effective specific heat method of solidification problems," Materials transactions, vol. 47, p. 2737, 2006.
    [15]張宇良, "利用有限元素法求解相變化熱傳問題," 成功大學工程科學系碩士班學位論文, 2012.
    [16]R. R. Namburu and K. K. Tamma, "Effective modeling/analysis of isothermal phase change problems with emphasis on representative enthalpy architectures and finite elements," International Journal of Heat and Mass Transfer, vol. 36, pp. 4493-4497, 1993.
    [17]K. H. Huebner, Thornton, Earl A., Byrom and Ted G., "The Finite Element Method For Engineers Third Edition," John Wiley & Sons, Inc., 1995.
    [18]A. J. Baker, "Finite element computational fluid mechanics," NASA STI/Recon Technical Report A, vol. 83, p. 41874, 1983.
    [19]R. D. Cook, Concepts and applications of finite element: John Wiley & Sons, 2007.
    [20]O. C. Zienkiewicz and R. L. Taylor, The finite element method vol. 3: McGraw-hill London, 1977.
    [21]P. Dunne, "Complete Polynomial Displacement Fields for the Finite Element Method," Aeronaut. J., vol. 72, 1968.
    [22]P. Davis and P. Rabinowitz, "Abscissas and Weights for Gaussian Quadratures of High Order," NBS J. of Research, vol. 56 No. 1, 1956.
    [23]H. T. Rathod, Nagaraja, K. V., Venkatesudu, B. and N. L. Ramesh,, "Gauss Legendre Quadrature over a triangle," Indian Institute of Science, vol. 84, pp. 183-188, 2004.
    [24]F. Hussain, et al., "Appropriate Gaussian quadrature formulae for triangles," International Journal of Applied Mathematics and Computation, vol. 4, pp. 023-038, 2012.
    [25]H. Rathod, et al., "Symmetric Gauss Legendre quadrature formulas for composite numerical integration over a triangular surface," Applied Mathematics and Computation, vol. 188, pp. 865-876, 2007.
    [26]C. T. Reddy and D. J. Shippy, "Alternative integration formulae for triangular finite elements," International Journal for Numerical Methods in Engineering, vol. 17, pp. 133-139, 1981.
    [27]C. H. Preston and A. H. Stroud, "Numerical Evaluation of Multiple Integrals II," Mathematical Tables and Other Aids to Computation, vol. 12, pp. 272-280, 1958.
    [28]C.A.Felippa and R.W.Clough, "The finite element method in solid mechanics," SIAM-AMS Proceedings, vol. 2, pp. 210-252, 1970.
    [29]C. Reddy, "Improved three point integration schemes for triangular finite elements," International Journal for Numerical Methods in Engineering, vol. 12, pp. 1890-1896, 1978.

    下載圖示 校內:2018-09-11公開
    校外:2018-09-11公開
    QR CODE