| 研究生: |
蔡育宏 Tsai, Yu-Hong |
|---|---|
| 論文名稱: |
人類細胞色素C參與活化Caspases的胺基酸之鑑定 Identification of the Residues of Human Cytochrome c Involved in Activating Caspases |
| 指導教授: |
莊偉哲
Chuang, Woei-Jer |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 生物化學研究所 Department of Biochemistry |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 77 |
| 中文關鍵詞: | 細胞色素C 、細胞凋亡 、蛋白交互作用 、微過氧化酶 |
| 外文關鍵詞: | cytochrome c, apoptosis, protein interaction, microperoxidase |
| 相關次數: | 點閱:72 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
計畫性細胞凋亡在不同的真核生物中的胚胎發育及組織的發展恆定扮演十分重要角色。在正常細胞受到刺激之後,有兩條不同的途徑會引發細胞凋亡。其一途徑是外在受體受到刺激所引發的細胞凋亡,其次是與細胞中的粒腺體相關的內在途徑。這兩條訊息傳遞路徑都已經有相關的文獻研究。其中細胞色素C在於細胞受到刺激之後會從粒腺體中釋放出來並且與Apaf-1蛋白結合成apoptosome進而引發內在路徑的細胞凋亡。細胞色素C是與Apaf-1的WD40區域產生蛋白交互作用活化procaspase 9並進而產生caspase 3的活化造成細胞凋亡。但是並無相關文獻指出關於細胞色素C是藉由哪些氨基酸與Apaf-1產生交互作用。因此,我們先使用牛的transducin綜合體 (2TRC)與大腸桿菌Tolb蛋白(1CRZ)模擬出可能的Apaf-1的WD40(7)與WD40(6)區域之結構。藉由結構分析,我們假設人類細胞色素C之鹼性氨基酸Lysine可能與Apaf-1的WD40區域之酸性氨基酸Aspartic acid存在有重要的相互作用。因此,我們將人類細胞色素C上的K72, K73, K86, K87, K88突變成Ala,我們想要去驗證是否上述的Lys在與Apaf-1蛋白交互作用中扮演的角色。此外,有文獻研究指出Y67的硝化作用會造成細胞色素C的結構改變並影響其活化caspases的能力。因此,我們也對於Y67做了Y67W、Y67H、Y67A、Y67F之突變。我們將上述的人類細胞色素C之突變株表現在大腸桿菌中並使用K562細胞株細胞液去進行caspase 3的活性分析。我們在實驗中所使用的受質是螢光且具特異性的caspase 3之受質Asp-Glu-Val-Asp-7-amino-4-trifluoromethyl coumarin(DEVD-AFC),進而分析人類細胞色素C造成caspases活化參與的胺基酸。我們在實驗結果中發現K86、K87、K88若圖變成Ala則會使得活化Caspase 3的能力降低。因此,我們猜測這些胺基酸可能是參與和Apaf-1作用的胺基酸。藉由這些分析,我們對於細胞凋亡的機制將有更進一步的瞭解。
Apoptosis is an important form of programmed cell death required for the embryonic development and tissue homeostasis of multicellular organisms. The extrinsic death receptors- and intrinsic mitochrondria-dependent pathways following the apoptotic stimulus leading to caspases activation have been well characterized. Cytochrome c released from mitochondria functions as a trigger for the formation of apoptosome in the intrinsic apoptotic pathway. The apoptosome is a heptameric complex comprised of apoptotic protease activating factor-1 (Apaf-1) and cytochrome c. The apoptosome binds and activates procaspase-9, resulting in activation of further caspases, such as caspase-3, which orchestrate the final packaging of the apoptotic cell. Apaf-1 is a 130-kDa protein consisting of a caspase recruitment domain (CARD), an arm domain, and two WD-40 repeats. It was shown that the WD-40 repeats act as a recognition domain for mitochondrial damage through binding to cytochrome c, allowing Apaf-1 to oligomerize and interact with procaspase-9 through the CARD-CARD interaction. However, little is known about how human cytochrome c interacts with Apaf-1. Using 3D structure of bovine transducin complex (2TRC) and E. coli Tolb protein (1CRZ) as structural templates, 3D model structures of two WD-40 repeats (WD-40 (7) and WD-40 (6)) was generated using homology modeling. Based on the structural analyses of human cytochrome c docking into two WD-40 repeats of Apaf-1 model, we hypothesized that the basic residues K72, K73, K86, K87 and K88 of cytochrome c maybe involved in the interaction with the acidic D residues of two WD-40 domains of Apaf-1. It was reported that the nitration of Y67 residue promoted a conformational change, resulting in affecting activation of caspases by cytochrome c. To identify the residues of cytochrome c involved in activation of caspases, we used site-directed mutagenesis on human cytochrome c and cell-free caspase activation assay to carry out the study. In this study we have expressed seven cytochrome c mutants (K72A/K73A, K72A/K86A, K86A/K87A/K88A, Y67A, Y67F, Y67H, and Y67W) and purified them to homogeneity with the yields of 5-15 mg/L. To identify the interaction between human cytochrome c and Apaf-1, we determined the biological activity of recombinant cytochrome c by using a cell-free caspase activation assay. This method indirectly measures their ability to bind Apaf-1, and the fluorogenic Asp-Glu-Val-Asp-7-amino-4-trifluoromethyl coumarin (DEVD-AFC) was used as the caspase-3 substrate. The mutations of K72, K86, K87, and K88 to alanines caused the decrease in activating caspase 3, suggesting that these residues maybe involved in Apaf-1 binding. These results may be important not only for identifying the binding residues of cytochrome c to apaf-1, but also for understanding cell apoptosis.
1. Acehan D, Jiang X, Morgan DG, Heuser JE, Wang X, Akey CW. Three-dimensional structure of the apoptosome: implications for assembly, procaspase-9 binding, and activation. Mol Cell. 9(2) 423-32, 2002
2. Adams, P. A., Byfield, M. P., Milton, R. C. and Pratt, J. M.: Oxygen activation and ligand binding by pure heme-octapeptide microperoxidase-8 (MP-8). J. Inorg. Biochem. 34, 167-175, 1988.
3. Adams, P. A. The peroxidasic activity of the haem octapetide microperoxidase-8 (MP-8): The kinetic mechanism of the catalytic reduction of H2O2 by MP-8 using 2,2′-Azinobis-(3-ethylbenzothiazoline-6-sulphonate)(ABTS) as reducing substrate. J. Chem. Soc.-Perkin Trans. 2, 1407-1414, 1990.
4. Adams, P. A. Microperoxidase and Iron Porphyrins. In Peroxidases in Chemistry and Biology vol. II (Everse, J., Everse, K.E. & Grisham M.B., eds.), CRC Press, Boston MA, pp-171-200, 1993.
5. Adams, J. M. and Cory, S. Apoptosomes: engines for caspase activation. Curr. Opin. Cell Biol. 14, 715-720, 2002
6. Adrain, C., Slee, E. A., Harte, M. T. and Martin, S. J. Regulation of apoptotic protease activating factor-1 oligomerization and apoptosis by the WD-40 repeat region. J. Biol. Chem. 274, 20855-20860, 1999
7. Adrain, C., and Martin, S. J.: The mitochondrial apoptosome: a killer unleashed by the cytochrome seas. Trends Biochem Sci. 26, 390-397, 2001.
8. Angel G. Martin, Howard O. Fearnhead Apocytochrome c blocks caspase-9 activation and Bax-induced apoptosis J Biol Chem. 277(52), 50834-50841, 2002
9. Aron, J., Baldwin, D. A., Marques, H. M., Pratt, J. M. and Adams, P. A.: Hemes and Hemoproteins. 1: Preparation and Analysis of the Heme-Containing Octapeptide (Microperoxidase-8) and Identification of the Monomeric Form in Aqueous Solution. J. Inorg. Biochem. 27, 227-243, 1986.
10. B. Alvarez1 and R. Radi : Peroxynitrite reactivity with amino acids and proteins Amino Acids.25 295-313, 2003
11. Benedict, M. A., Hu, Y., Inohara, N. and Nunez, G. Expression and functional analysis of Apaf-1 isoforms. Extra Wd-40 repeat is required for cytochrome c binding and regulated activation of procaspase-9. J. Biol. Chem. 275, 8461-8468, 2000
12. Baldwin, D. A., Marques, H. M. and Pratt, J. M.: Hemes and Hemoproteins. 5: Kinetics of the Peroxidatic Activity of Microperoxidase-8: Model for the Peroxidase Enzymes. J. Inorg. Biochem. 30, 203-217, 1987.
13. Bossy-Wetzel E, Newmeyer DD, Green DR. Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J. 17(1) 37-49, 1998
14. Bostrom M, Williams DR, Ninham BW. Specific ion effects: Role of salt and buffer in protonation of cytochrome c. Eur Phys J E Soft Matter. 13(3) 239-45, 2004
15. Burkitt MJ, Wardman P. Cytochrome C is a potent catalyst of dichlorofluorescin oxidation: implications for the role of reactive oxygen species in apoptosis. Biochem Biophys Res Commun. 282(1):329-33, 2001
16. Cai J, Yang J, Jones DP. Mitochondrial control of apoptosis: the role of cytochrome c. Biochim Biophys Acta. 1366(1-2) 139-49 , 1998
17. Carraway, A. D., McCollum, M. G. and Peterson, J.: Characterization of N-Acetylated heme undecapeptide and some of its derivatives in aqueous media: monomeric model systems for hemoproteins. Inorg. Chem. 35, 6885-6891, 1996.
18. Cassina AM, Hodara R, Souza JM, Thomson L, Castro L, Ischiropoulos H, Freeman BA, Radi R. : Cytochrome c nitration by peroxynitrite. J Biol Chem. 275(28), 21409-21415, 2000
19. Chipuk JE, Bhat M, Hsing AY, Ma J, Danielpour D. Bcl-xL blocks transforming growth factor-beta 1-induced apoptosis by inhibiting cytochrome c release and not by directly antagonizing Apaf-1-dependent caspase activation in prostate epithelial cells.J Biol Chem. 276(28) 26614-21, 2001
20. Chuang, W. J., Chang, Y. D., and Jeng, W. Y. Kinetic and structural studies of N-acetyl-microperoxidase-5 and -microperoxidase-8. J. Inorg. Biochem. 75, 93-97, 1999
21. Cutler, R. L., Pielak, G. J., Mauk, A. G. and Smith, M.: Replacement of cysteine-107 of Saccharomyces cerevisiae iso-1-cytochrome c with threonine: improved stability of the mutant protein. Protein Eng. 1, 95-99, 1987.
22. Derman, A. I., Beckwith, J. Escherichia coli alkaline phosphatase fails to acquire disulfide bonds when retained in the cytoplasm. J. Bacteriol. 173, 7719-7722, 1991
23. Derman, A. I., Prinz, W. A., Belin, D. and Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744-1777, 1993
24. Del Rio, L. A., Gomez Ortega, M., Leal Lopez, A. and Lopez Gorge, J.: A More Sensitive Modification of the Catalase Assay with the Clark Oxygen Electrode. Anal. Biochem. 80, 409-415, 1977.
25. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochrome c release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 274(4) 2225-33, 1999
26. Gebicka L, Didik J.: Mechanism of peroxynitrite interaction with cytochrome c. Acta Biochim Pol. 50(3), 815-23, 2003
27. Goodhew, C. F., Brown, K. R. and Pettigrew, G. W.: Haem staining in gels, a useful tool in the study of bacterial c-type cytochromes. Biochim. Biophys. Acta. 852, 288-294, 1986.
28. Goodsell DS. The molecular perspective: Cytochrome C and apoptosis. Stem Cells. 22 (3) 428-9, 2004
29. Haga N, Fujita N, Tsuruo T. Mitochondrial aggregation precedes cytochrome c release from mitochondria during apoptosis. Oncogene. 22(36) 5579-85, 2003
30. Hashimoto, M., Takeda, A., Hsu, L. J., Takenouchi, T. and Masliah, E. Role of cytochrome c as a stimulator of alpha-synuclein aggregation in Lewy body disease. J. Biol. Chem. 274, 28849-28852, 1999
31. Higuchi, R., Kummel, B., and Saiki, R. K.: A general method of invitro preparation and specific mutagenesis of DNA fragments: study of protein and DNA interactions. Nucleic Acides Res. 16, 7351-7367, 1988.
32. Hiraoka Y, Yamada T, Goto M, Das Gupta TK, Chakrabarty AM. Modulation of mammalian cell growth and death by prokaryotic and eukaryotic cytochrome c. Proc Natl Acad Sci 101(17) 6427-32, 2004
33. Ho, S. N., H. D. Hunt, R. M. Morton, J. K. Pullen, and L. R. Pese.: Site directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51-59, 1989.
34. Hortelano S, Alvarez AM, Bosca L.: Nitric oxide induces tyrosine nitration and release of cytochrome c preceding an increase of mitochondrial transmembrane potential in macrophages FASEB J.13, 2311-2317, 1999
35. Hu, Y., Ding, L., Spencer, D. M. and Nunez, G. WD-40 repeat region regulates Apaf-1 self-association and procaspase-9 activation. J. Biol. Chem. 273, 33489-33494, 1998
36. Hu, Y., Benedict, M. A., Ding, L. and Nunez, G. Role of cytochrome c and dATP/ATP hydrolysis in Apaf-1-mediated caspase-9 activation and apoptosis. EMBO J. 18, 3586-3595, 1999
37. Iobbi Nivol, C., Crooke, H., Griffiths, L., Grove, J., Hussain, H., Pommier, J., Mejean, V. and Cole, J. A. A reassessment of the range of c-type cytochromes synthesized by Escherichia coli K-12. FEMS Microbiol. Lett. 119, 89-94, 1994.
38. Iverson SL, Orrenius S. The cardiolipin-cytochrome c interaction and the mitochondrial regulation of apoptosis. Arch Biochem Biophys. 423(1) 37-46, 2004
39. Jiang, X. and Wang, X. Cytochrome c promotes caspase-9 activation by inducing nucleotide binding to Apaf-1. J. Biol. Chem. 275, 31199-31203, 2000
40. Jiang X, Wang X. Cytochrome c-mediated Apoptosis. Annu Rev Biochem. 73 87-106, 2004
41. John, C., Wayne, J. Fairbrother, Arthur G. P., Nicholas J. S. Protein NMR Spectroscopy. 1996.
42. Kadokura, H., Katzen, F. and Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111-135, 2003.
43. Klein SD, Brune B. Heat-shock protein 70 attenuates nitric oxide-induced apoptosis in RAW macrophages by preventing cytochrome c release. Biochem J. 362 635-41, 2002
44. Kluck, R. M., Bossy-Wetzel, E., Green, D. R. and Newmeyer, D. D. The release of cytochrome c from mitochondria: a primary site for Bcl-2 regulation of apoptosis. Science 275, 1132-1136, 1997
45. Kluck RM, Martin SJ, Hoffman BM, Zhou JS, Green DR, Newmeyer DD Cytochrome c activation of CPP32-like proteolysis plays a critical role in a Xenopus cell-free apoptosis system. EMBO J. 16(15) 4639-49, 1997
46. Li CY, Lee JS, Ko YG, Kim JI, Seo JS. Heat shock protein 70 inhibits apoptosis downstream of cytochrome c release and upstream of caspase-3 activation. J Biol Chem. 275(33) 25665-71, 2000
47. Liu, X., Kim, C. N., Yang, J., Jemmerson, R. and Wang, X. Induction of apoptotic program in cell-free extracts: requirement for dATP and cytochrome c. Cell. 86, 147-157, 1996
48. Martin AG, Nguyen J, Wells JA, Fearnhead HO. Apo cytochrome c inhibits caspases by preventing apoptosome formation. Biochem Biophys Res Commun. 319(3) 944-50, 2004
49. Moore, G. R. and Pettigrew, G. W.: Cytochromes c. Evolutionary, Structural, and Physicochemical Aspects, Springer Verlag, New York, 1990.
50. Murphy KM, Streips UN, Lock RB. Bax membrane insertion during Fas (CD95)-induced apoptosis precedes cytochrome c release and is inhibited by Bcl-2. Oncogene. 18(44) 5991-9, 1999
51. Nur-E-Kamal A, Gross SR, Pan Z, Balklava Z, Ma J, Liu LF. Nuclear Translocation of Cytochrome c during Apoptosis. J Biol Chem. 279(24) 24911-4, 2004
52. Ostrander DB, Sparagna GC, Amoscato AA, McMillin JB, Dowhan W. Decreased cardiolipin synthesis corresponds with cytochrome c release in palmitate-induced cardiomyocyte apoptosis. J Biol Chem. 276(41) 38061-7, 2001
53. Paleus, S., Ehrenberg, A. and Tuppy, H. Study of a peptic degradation product of cytochrome-c. II. Investigation of the linkage between peptide moiety and prosthetic group. Acta Chem. Scand. 9, 365-374, 1955.
54. Pettigrew, G. W. and Moore, G.R.: Cytochromes c. Biological Aspects, Springer Verlag, New York, 1987.
55. Pollock, W. B., Rosell, F. I. and Twitchett, M. B.: Bacterial expression of a mitochondrial cytochrome c. Trimethylation of lys72 in yeast iso-1-cytochrome c and the alkaline conformational transition. Biochemistry 37, 6124-6131, 1998.
56. Qi, P. X., Di Stefano, D. L., and Wand, A. J.: Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing. Biochemistry 33, 6408-17, 1994.
57. Raisova M, Bektas M, Wieder T, Daniel P, Eberle J, Orfanos CE, Geilen CC. Resistance to CD95/Fas-induced and ceramide-mediated apoptosis of human melanoma cells is caused by a defective mitochondrial cytochrome c release. FEBS Lett. 473(1) 27-32 , 2000
58. Saleh, A., Srinivasula, S. M., Acharya, S., Fishel, R. and Alnemri, E. S. Cytochrome c and dATP-mediated oligomerization of Apaf-1 is a prerequisite for procaspase-9 activation. J. Biol. Chem. 274, 17941-17945, 1999
59. Schonhoff CM, Gaston B, Mannick JB. Nitrosylation of cytochrome c during apoptosis. J Biol Chem. 278(20) 18265-70, 2003
60. Scott, R. A. and Mauk, A.G. Cytochrome c. A multidisciplinary approach, University Science Books, Sausalito, 1996
61. Shi, Y. A structural view of mitochondria-mediated apoptosis. Nat. Struct. Biol. 8, 394-401, 2001.
62. Takeyama N, Miki S, Hirakawa A, Tanaka T. Role of the mitochondrial permeability transition and cytochrome C release in hydrogen peroxide-induced apoptosis. Exp Cell Res. 274(1) 16-24. , 2002
63. Thony-Meyer, L., Fischer, F., Kunzler, P., Ritz, D. and Hennecke, H. Escherichia coli genes required for cytochrome c maturation. J. Bacteriol. 177, 4321-4326, 1995.
64. Thony-Meyer, L. Cytochrome c maturation: a complex pathway for a simple task? Biochem. Soc. Trans. 30, 633-638, 2002
65. Torok NJ, Higuchi H, Bronk S, Gores GJ. Nitric oxide inhibits apoptosis downstream of cytochrome C release by nitrosylating caspase 9. Cancer Res. 62(6) 1648-53. 2002
66. Tsou, C. L. Cytochrome-c modified by digestion with proteolytic enzymes. II. Properties of pepsin-modified cytochrome c. Biochem. J. 49, 362-367, 1951
67. Tuppy, H. and Paleus, S. Study of a peptic degradation product of cytochrome-c. I. Purification and chemical composition. Acta Chem. Scand. 9, 353-364, 1955
68. Ueta E, Kamatani T, Yamamoto T, Osaki T. Tyrosine-nitration of caspase 3 and cytochrome c does not suppress apoptosis induction in squamous cell carcinoma cells. Int J Cancer. 103(6) 717-22, 2003
69. Vier J, Linsinger G, Hacker G. Cytochrome c is dispensable for fas-induced caspase activation and apoptosis. Biochem Biophys Res Commun. 261(1) 71-8, 1999
70. Wang, J. S. and Van Wart, H. E.: Resonance Raman characterization of the heme c group in N-acetyl-microperoxidase-8: a thermal intermediate spin-high spin state mixture. J. Phys. Chem. 93, 7925-7931, 1989.
71. Winkler JR. Cytochrome c folding dynamics. Curr Opin Chem Biol. 8(2) 169-74, 2004
72. Wuthrich, K., NMR of Proteins and Nucleic Acids. 1986.
73. Yu T, Wang X, Purring-Koch C, Wei Y, McLendon GL. A mutational epitope for cytochrome C binding to the apoptosis protease activation factor-1. J Biol Chem. 276(16) 13034-8, 2001
74. Yuan J, Murrell GA, Trickett A, Wang MX. Involvement of cytochrome c release and caspase-3 activation in the oxidative stress-induced apoptosis in human tendon fibroblasts. Biochim Biophys Acta. 1641(1) 35-41. 2003
75. Zhao M, Antunes F, Eaton JW, Brunk UT. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. Eur J Biochem.270 3778-86, 2003
76. Zhivotovsky B, Orrenius S, Brustugun OT, Doskeland SO. Injected cytochrome c induces apoptosis. Nature 391(6666) 449-50, 1998
77. Zou, H., Henzel, W. J., Liu, X., Lutschg, A. and Wang, X. Apaf-1, a human protein homologous to C. elegans CED-4, participates in cytochrome c-dependent activation of caspase-3. Cell. 90, 405-413, 1997
78. 張育達,微過氧化酵素之功能與結構的研究。國立成功大學生物化學研究所碩士論文, 1996。
79. 鄭文義 利用核磁共振光譜分析大腸桿菌表現的人類細胞色素C重組蛋白之三維結構研究。國立成功大學基礎醫學研究所博士論文,2004。