| 研究生: |
蘇昱豪 Su, Yu-Hao |
|---|---|
| 論文名稱: |
熱擴散微細鍍鈀銅導線之組織特性及放電結球機制探討 Microstructures and Electric Flame-Off (EFO) Mechanism of Fine Palladium Coated Copper Wires (PCC) with Thermal Diffusion |
| 指導教授: |
洪飛義
Hung, Fei-Yi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 材料科學及工程學系 Department of Materials Science and Engineering |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 鍍鈀銅線 、鈀網線 、放電結球 、熱擴散 |
| 外文關鍵詞: | palladium coated copper wires, palladium-net wires, electric flame-off, thermal diffusion |
| 相關次數: | 點閱:96 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鍍鈀銅線 (Palladium Coated Copper Wire, PCC)為改善銅線易氧化之新穎打線接合材料,保有銅線優點並為電及熱良導體以及能夠抑制接合後界面介金屬化合物 (Intermetallic Compounds, IMCs)生成速率,且在製程成本上也較金線便宜。但是,PCC在放電結球 (Electric Flame-Off, EFO)後鈀原子容易在頸部偏析而造成頸部與球部鈀原子分佈不均導致可靠度下降。因此,本研究針對鍍鈀銅線進行真空熱處理,藉熱擴散 (Thermal Diffusion)使鈀原子進入銅線內部形成鈀網線 (Palladium-Net Wire, PNW),進一步克服頸部鈀原子偏析現象。最終,比較熱處理前後鍍鈀銅線之放電結球、打線接合及通電機制。
實驗結果顯示,純銅線在大氣中受電及熱效應影響,表面會生成硬脆氧化層並有氧化銅奈米線結構出現,而鍍鈀銅線的氧化情形則趨緩許多,顯示PCC可抑制氧化現象。從原線材之結球拉伸及金相可看出頸部為粗大化之等徑晶且延性下降至5%以下,這將使接合可靠度及自由度下降。經過400℃、450℃及500℃退火後,發現400℃線材表面鈀含量偏高 (仍高於30%);500℃時線材表面已嚴重變形不適合後續製程。因此,本研究以450℃做為較理想真空退火溫度。
比較熱處理前後線材發現,經450℃退火鍍鈀銅線在接合強度及接合通電方面仍保有原線材優勢,擁有良好的接合力及電性;而頸部金相受熱處理影響呈等軸晶分佈且延性提升到10%。此外,頸部及球部鈀原子分佈情形也較均勻,顯示熱處理之PNW對於提升頸部可靠度有實質幫助並可提升應用性。
In this study, the annealed effect (at 400 ℃~500 ℃ for 30 min) on the tensile mechanical properties and hardness of thin palladium coated copper wires (PCC) Φ =18μm (0.7mil) were investigated. The microstructural characteristics and the mechanical properties before and after an electric flame-off (EFO) were also studied. Results indicated that with annealing temperatures of more than 450 ℃, the wires possessed a fully annealed structure, the tensile strength and the elongation decreased. Through Pd atoms diffusion and equiaxed grains formed in the matrix structure, the PCC wires became the palladium-net wires (PNW). The microstructures of the free air ball (FAB) of the various wires after EFO contained the column-like grains. The column-like grains grew from the heat-affected zone (HAZ) to the Cu ball. From tensile properties, hardness and electrical properties analysis, the 450℃ annealed wires in the neck zones showed the higher reliability than PCC, and retained advantages of PCC, which contained good bondability and IMCs inhibited ability.
1. G.G. Harman and J. Albers, “Ultrasonic Welding Mechanism as Applied to Aluminum-Wire and Gold-Wire Bonding in Microelectronics”, IEEE Transactions on Parts Hybrids and Packaging, Vol. 13 (1977), pp. 406-412.
2. N. Srikanth, S. Murali, Y. M. Wong and C J. Vath III, “Critical Study of Thermosonic Copper Ball Bonding”, Thin Solid Films, Vol. 462–463 (2004), pp. 339-345.
3. S. Murali, N. Srikanth and C J. Vath III, “Grains, Deformation Substructures, and Slip Bands Observed in Thermosonic Copper Ball Bonding”, Materials Characterization, Vol. 50 (2003), pp. 39-50.
4. Y. W. Lin, R. Y. Wang, W. B. Ke, I. S. Wang, Y. T. Chiu, K. C. Lu, K. L. Lin and Y. S. Lai, “The Pd Distribution and Cu Flow Pattern of The Pd-Plated Cu Wire Bond and Their Effect on The Nanoindentation”, Materials Science and Engineering A, Vol. 543 (2012), pp. 152-157.
5. G. C. Leong and H. Uda, “Comparative Reliability Studies and Analysis of Au, Pd-Coated Cu and Pd-Doped Cu Wire in Microelectronics Packaging” , PLoS One, Vol. 8, Issue 11 (2013): e78705.
6. G. G. Harman, “Wire Bonding in Microelectronics Materials, Processes, Reliability, and Yield, 2nd ed.”, McGraw-Hill, New York (1997), pp. 1-11.
7. Y. Tian, C. Wang, I. Lum, M. Mayer, J. P. Jung and Y. Zhou, “Investigation of Ultrasonic Copper Wire Wedge Bonding on Au/Ni Plated Cu Substrates at Ambient Temperature”, Journal of Materials Processing Technology, Vol. 208 (2008), pp. 179-186.
8. 陳家旭,「打線接合之實驗與有限元素研究」,國立交通大學機械工程研究所碩士論文,民國九十一年,第5-7頁。
9. O. L. Anderson, H. Christensen and P. Andreatch, “Technique for Connecting Electrical Leads to Semiconductors”, Journal of Applied Physics, Vol. 28 (1957), pp. 923-923.
10. B. Langenecker, “Effects of Ultrasound on Deformation Characteristics of Metals”, IEEE Transactions on Sonics and Ultrasonics, Vol. 13 (1966), pp. 1-8.
11. 陳昭亮,張昫揚,「密集角距封裝之金線結球參數分析研究」,興大工程學刊,第十二卷,第二期(民國九十年),第127-141頁。
12. S. Murali, N. Srikanth and C. J. Vath, III, “An Analysis of Intermetallics Formation of Gold and Copper Ball Bonding on Thermal Aging”, Materials Research Bulletin, Vol. 38, No. 4 (2003), pp. 637-646.
13. H. Xu, I. Qin, H. Clauberg, B. Chylak and V. L. Acoff, “Behavior of Palladium and Its Impact on Intermetallic Growth in Palladium-Coated Cu Wire Bonding”, Acta Materialia, Vol. 61 (2013), pp. 79-88.
14. I. M. Kohen, L. J. Huang and P. S Ayyaswamy, “Melting and Solidification of Thin Wires: A Class of Phase-Change Problems with A Mobile Interface – II. Experimental Confirmation”, International Journal of Heat and Mass Transfer, Vol. 38, No. 9 (1995), pp. 1647-1659.
15. 林宜璋,「不同退火條件之銅導線經放電結球前後之機械性質與織構分析」,國立成功大學材料科學與工程研究所碩士論文,民國九十六年,第52-54頁。
16. H. C. William, “Metals Handbook-Properties and Selection: Nonferrous Alloys and Pure Metals”, ASM International, 9th ed. Vol. 2 (1979).
17. G. Khatibi, B. Weiss, J. Bernardi and S. Schwarz, “Microstructural Investigation of Interfacial Features in Al Wire Bonds”, Journal of Electronic Materials, Vol. 41 (2012), pp. 3436-3446.
18. H. G. Kim, T. W. Lee, E. K. Jeong, W. Y. Kim and S. H. Lim, “Effects of Alloying Elements on Microstructure and Thermal Aging Properties of Au Bonding Wire”, Microelectronics Reliability, Vol. 51, No. 12 (2011), pp. 2250-2256.
19. M. A. Bahi, P. Lecuyer, A. Gentil, H. Fremont, J. P. Landesman, F. Christien and R. L. Gall, “Degradation Mechanisms of Au-Al Wire Bonds During Qualification Tests at High Temperature for Automotive Applications: Quality Improvement by Process Modification”, IEEE Transactions on Device and Materials Reliability, Vol. 8, No. 3 (2008), pp. 484-489.
20. T. M. Jeong, S. H. June, S. C. Jong and H. K. Seong, “New Materials for Bonding Wire”, in SEMICON Singapore. 2008. Singapore.
21. K. A. Yoo, C. Uhm, T. J. Kwon, J. S. Cho and J. T. Moon, “Reliability Study of Low Cost Alternative Ag Bonding Wire with Various Bond Pad Materials”, IEEE Electronics Packing Technology Conf., (2009), pp. 851-857.
22. M. Sheaffer, L. Levine and B. Schlain, “Optimizing the Wire-Bonding Process for Copper Ball Bonding, Using Classic Experimental Designs”, Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, Vol. 10 (1987), pp. 321-326.
23. K. Toyozawa, K. Fujita, S. Minamide and T. Maeda, “Development of Copper Wire Bonding Application Technology”, Components, Hybrids, and Manufacturing Technology, IEEE Transactions on, Vol. 13 (1990), pp. 667-672.
24. Z. W. Zhong, H. M. Ho, Y. C. Tan, W. C. Tan, H. M. Goh, B. H. Toh and J. Tan, “Study of Factors Affecting the Hardness of Ball Bonds in Copper Wire Bonding”, Microelectronic Engineering, Vol. 84 (2007), pp. 368-374.
25. S. Kaimori, T. Nonaka and A. Mizoguchi, “The Development of Cu Bonding Wire with Oxidation-resistant Metal Coating”, IEEE Trans. Adv. Packag., Vol. 29, No. 2 (2006), pp. 227-231.
26. T. Uno, “Enhancing Bondability with Coated Copper Bonding Wire”, Microelectronics Reliability, Vol. 51 (2011), pp. 88-96.
27. 陳建良,「發光二極體中打線接合構裝技術之研究」,國立台灣科技大學醫學工程研究所碩士論文,民國一百年,第13-15頁。
28. C. J. Hang, W. H. Song, I. Lum, M. Mayer, Y. Zhou, C. Q. Wang, J. T. Moon and J. Persic, “Effect of Electronic Flame Off Parameters on Copper Bonding Wire: Free-Air Ball Deformability, Heat Affected Zone Length, Heat Affected Zone Breaking Force”, Microelectronic Engineering, Vol. 86 (2009), pp. 2094-2103.
29. M. Chen, Y. Yue, and Y. Ju, “Growth of Metal and Metal Oxide Nanowires Driven by The Stress-Induced Migration”, Journal of Applied Physics 111, 104305(2012).
30. H. J. Kim, J. Y. Lee, K. W. Paik, K. W. Koh, J. Won, S. Choe, J. Lee, J. T. Moon and Y. J. Park, “Effects of Cu/Al Intermetallic Compound (IMC) on Copper Wire and Aluminum Pad Bondability”, IEEE Transactions on Components and Packaging Technologies, Vol. 26, No. 2 (2003), pp. 367-374.
31. 鮑忠興,劉思謙,「近代穿透式電子顯微鏡實務」,滄海書局,民國九十七年,第96-97頁。
校內:2017-08-01公開