簡易檢索 / 詳目顯示

研究生: 邱祺權
Chiou, Chi-Chiuan
論文名稱: 數值模擬氣體輔助二氧化碳雷射切割超薄玻璃之熱分析
Thermal Analysis of Numerical Simulation on Gas-assisted Carbon Dioxide Laser Cutting for Ultrathin Glass
指導教授: 溫昌達
Wen, Chang-Da
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 120
中文關鍵詞: 雷射切割氣體輔助相變化切割品質熱影響區
外文關鍵詞: laser cutting, Gas-assisted, phase change, cutting quality, heat affected zone
相關次數: 點閱:93下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究是利用COMSOL Multiphysics軟體模擬三維暫態之氣體輔助雷射切割超薄玻璃,其研究目的是利用簡單模型了解氣體輔助切割與因熱應力產生粗糙裂紋(熱影響區深度)之間的關係。在研究中承接了實驗室團隊之研究成果,考慮材料反射率吸收係數以及切割過程之相變化,使溫度場更貼近真實情況。本文主要分析的有噴束輔助之噴束參數:噴嘴直徑、噴嘴與材料之距離、雷諾數,除此之外也探討不同切割參數:雷射光斑直徑、雷射能量(有無相變化)在使用噴束輔助之影響。
    本研究選用Al2O3為待切割材料,模擬結果顯示,無論切割過程中是否有產生相變化,在噴嘴參數(噴嘴直徑、噴嘴與材料之距離、雷諾數)中固定其餘兩者,噴嘴直徑越小或噴嘴與材料之距離越小或雷諾數Re越大,熔化深度與熱影響區深度會越小,有較佳的切割結果。
    在探討不同切割參數與有無噴束輔助切割之結果顯示,固定其餘參數,且都有產生相變化之切割情況下,選用光斑直徑較大的,切割面上的熱影響區與熔化的深度與表面寬度減少的值與比例皆較多;而在探討雷射能量時,選用雷射能量較大的切割參數,即有產生相變化之切割,在切割面的深度或是表面寬度上,能量較大減少的熱影響區的值比較多,因此選用光斑直徑較大者以及能量較大者之切割參數,其使用輔助氣體之效果更加明顯。
    最後經由結果分析可得,使用噴束輔助可以增加其冷卻速率,進而增加切割效果;除此之外,噴束輔助也會減緩表面對於深度之間的溫度梯度,進而減少微裂紋的產生,改善了切割品質。

    This study is to simulate the 3D transient gas-assisted laser cutting for ultrathin glass by COMSOL Multiphysics software. The research purpose is to use the simple model to understand the relation between gas-assisted cutting and the rough crack (heat affected zone depth) produced by the thermal stress. This study continues previous works of our lab team to consider the reflection and absorption coefficient of material and phase change of cutting process in order to obtain the real temperature distribution. The main jet-assisted parameters are nozzle diameter, the distance between nozzle and material, Reynolds number. In addition, the different cutting parameters, including laser spot diameter, laser energy are also investigated.
    In this study, Al2O3 is chosen as the cutting material. The simulation result shows that the smaller diameter of the nozzle or the smaller distance between nozzle and material or the larger Reynolds number makes heat affected zone depth smaller, and has better cutting quality.
    For the examination of jet-assisted cutting parameters, the results show that with larger spot diameter or laser power, the depth of the heat affected zone reduces more, so that the enhancement of jet-assisted becomes more obvious.
    Finally, the simulation results also show that using jet-assisted cutting can increase cooling rate to improve the cutting. Besides, it also reduces the surface temperature gradient in depth and improves the cutting quality.

    目錄 摘要 I 誌謝 XV 目錄 XVI 表目錄 XX 圖目錄 XXI 符號表 XXV 第一章 緒論 1 1-1 研究背景與動機 1 1-2 文獻回顧 3 1-2.1 雷射切割方法 3 1-2.2 玻璃切割機制 4 1-2.3 超薄玻璃 10 1-2.4 玻璃材料性質 10 1-2.5 超薄玻璃製造過程 11 1-2.6 輔助切割方法 13 1-2.7 COMSOL Multiphysics 16 1-3 研究目的 17 1-4 全文架構 17 第二章 基礎原理 20 2-1 雷射原理 20 2-1.1 雷射輻射原理 20 2-1.2 CO2雷射 22 2-1.3 高斯雷射熱源 25 2-2 熱傳理論 32 2-2.1 統御方程式 32 2-2.2 邊界條件 34 2-2.3 相變化假設與討論 36 第三章 數值方法 40 3-1 COMSOL Multiphysics驗證 40 3-2 網格獨立測試 47 3-2.1 模型 47 3-2.2 網格架構 47 3-2.3 網格測試結果 47 3-3 數值方法設定 54 3-3.1 基本假設與初始條件 54 3-3.2 統御方程式與邊界條件之數值設定 54 3-4 數值模擬流程 55 3-5 數值模擬參數 59 3-5.1 材料參數 59 3-5.2 材料潛熱 60 3-5.3 材料反射率 65 3-5.4 噴束冷卻之熱對流係數 67 第四章 結果與討論 71 4-1 物理模型與切割參數 71 4-1.1 物理模型與材料性質 71 4-1.2 切割參數 73 4-1.3 結果與比較 73 4-2 低溫環境切割 81 4-3 氣體輔助切割 83 4-3.1 平行流氣體輔助 83 4-3.2 噴束冷卻之參數影響 84 4-3.3 平均熱對流係數 90 4-3.4 光斑直徑之影響 95 4-3.5 有無相變化之影響 101 4-3.6 冷卻時間與冷卻速率 103 4-3.7 溫度梯度 109 第五章 結論與未來工作 112 5-1 結論 112 5-2 未來工作 114 參考文獻 115

    參考文獻
    1.H. S. Kang, S. K. Hong, S. C. Oh, J. Y. Choi, M. G. Song, “A study of cutting glass by laser,” Proceedings of SPIE Vol. 4426, 2002.
    2.C. Hermanns, “Laser Cutting of Glass,” From Conference Vol. 4102, 2000.
    3.鄭裕章, “冷卻輔助雷射切割玻璃基板之研究。”華梵大學機電工程學系碩士學位論文, 2007.
    4.R. M. Lumley, Controlled separation of brittle materials using a laser. Am. Ceram. Soc. Bull., 1969, 48, 850-854
    5.M. Kumagai, K. K. Hamamatsu Photonics, T. Shizuoka Sakamoto, E. Ohmura, “Laser processing of doped silicon wafer by the Stealth Dicing,” Semiconductor Manufacturing pp. 1-4, 2007.
    6.H. Y. Zheng, T. Lee, “Studies of CO2 laser peeling of glass substrates,” IOP Journal of Micromechanics and Microengineering, Vol. 15, Number 11, 2005.
    7.C. H. Tsai, C. S. Liou, “Fracture Mechanism of Laser Cutting With Controlled Fracture,” Journal of Manufacturing Science and Engineering, Vol. 125, pp. 519-528, 2003.
    8.C. J. Tsai, C. J. Chen, “Formation of the breaking surface of alumina in laser cutting with a controlled fracture technique,” Journal of Engineering Manufacture, Vol. 217, pp. 489-497, 2003.
    9.A. Grosse, M. Grewe and H. Fouckhardt, “Deep wet etching of fused silica glass for hollow capillary optical leaky waveguides in microfluidic devices.” Journal of Micromechanics and Microengineering, 11(2001), 257-262.
    10.S. Hoehla, S. Garner, M. Hohmann, O. Kuhls, X. Li, A. Schindler, N. Fruehauf, “Full Color AM-LCDs on Flexible Glass Substrates,” Corning Incorporated, 2010.
    11.A. Weber, S. Deutschbein, A. Plicht, A. Habeck, “Thin glass-polymer systems as flexible substrates for displays,” SID Symposium Digest of Technical Papers, Vol. 33, pp. 53 – 55, 2002.
    12.“Corning Gorilla Glass,” Corning Incorporated, 2010.
    13.Pascal Richet, “Heat capacity of silicate glasses,” Chemical Geology, Vol. 62, pp. 111-124, 1987.
    14.Robert G. Berman, Thomas H. Brown, “Heat capacity of minerals in the system Na2O-K2O-CaO-MgO-FeO-Fe2O3-Al2O3-SiO2-TiO2-H2O-CO2: representation, estimation, and high temperature extrapolation,” Contributions to Mineralogy and Petrology, Vol. 89 pp. 168-183, 1985.
    15.D. J. Money available: http://www.moneydj.com/kmdj/news/NewsViewer.aspx?a=ebc7664d-313d-4434-9425-31ca2e5cc66f.
    16.鄭中緯, 沈威志, 陳政雄, 李依如, “平面顯示器製程設備技術專輯,” 機械工業雜誌 315期, pp. 52 – 55, 2009.
    17.楊憲東, 陳煜傑, 黃國興, “軟電R2R製程設備傳輸動態分析與控制,” 機械工業雜誌 339期, pp. 36 – 42, 2011.
    18.Industrial Technology Research Institute of Taiwan (ITRI) Available:
    http://www.itri.org.tw/chi/msl/p4.asp?RootNodeId=070&NavRootNodeId=0733&NodeId=073322&ArticleNBR=3045.
    19.F. J. Grove,D. C. Wright, and F. M. Hamer, “Cutting of glass with a laser beam,” US Pat. 3,543,979, 1970.
    20.G. K. Chui, “Laser cutting of hot glass.” American Ceramic Society Bulletin, 54(1975),514-518.
    21.Y. Y. Kuo, “Thermal Simulation on Carbon Dioxide Laser Cutting for Ultrathin Glass,” National Cheng Kung University Department of Mechanical Engineering Master’s Thesis, July, 2015.
    22.V. S. Kondratenko, “Method of splitting non-metallic materials. US Pat.” 5,609,284, 1997.
    23.C. H. Tsai, B. C. Lin, “Laser Cutting with Controlled Fracture and Pre-Bending Applied to LCD Glass Separation,” International Journal of Advanced Manufacturing Technology, 32, pp. 1155-1162, 2007.
    24.A. Kruusing, “Underwater and Water- Assisted Laser Processing: Part1–General Features, Steam Cleaning and Shock Processing.” Opt.Lasers Engrg. Vol. 41, pp. 307–327 (2004).
    25.A. Kruusing, “Underwater and Water- Assisted Laser Processing: Part2–Etching, Cuting and Rarely Used Methods.” Opt. Lasers Engrg.Vol. 41, pp. 329–352 (2004).
    26.黃冠仁,“CO2雷射加工高分子及玻璃材料的缺陷改善探討。”國立成功大學機械工程學系碩士論文,2006.
    27.吳宗憲,“CO2雷射加工藍寶石基板之研究。”國立雲林科技大學機械工程學系碩士論文,2009.
    28.“Introduction to COMSOL Multiphysics,” COMSOL Incorporated, 1998.
    29.“Heating with a Moving Laser,” COMSOL Incorporated, 2008.
    30.“Phase Change,” COMSOL Incorporated, 2008.
    31.R. Klein, Laser Welding of Plastics: Wiley-VCH, 2011.
    32.蔡宗河,“CO2 雷射加工。”全華科技圖書股份有限公司,1995。
    33.“Gaussian Beam Optics,” Available: http://www.cvimellesgriot.com/.1919–1928, August 1997.
    34.B. H. Zhou and S. M. Mahdavian, “Experimental and theoretical analyses of cutting nonmetallic materials by low power CO2-laser.” Journal of Materials Processing Technology, 146(2004), 188-192.
    35.“Numerical Simulation of SI Nanosecond Laser Annealing by Comsol Multiphysis,” COMSOL Incorporated, 2008.
    36.J. E. Shelby, “Introduction to Glass Science and Technology,” Royal Society of Chemistry, 2005.
    37.T.S. Yang, G. D. Chen, K-S Chen et al, “Thermal Analysis of a Laser Peeling Technique for Removing Micro Edge Cracks of Ultrathin Glass Substrates for Web Processing,” in Proc. ASME IMECE 2015, Huston,TX, USA, Nov. 2015.
    38.D. Rosenthal, “A New Method of Determining Thermal Diffusivity at Various Temperatures,” Los Angeles Engineering, 1946.
    39.R. G. Munro, “Evaluated Material Properitied for a Sintered α-Alumina,” Journal of the American Ceramic Society, Vol. 80, Issue 8, pp. 1919–1928, August 1997.
    40.P. H. Zhang, R. Z. Chang, Z. Wei, H. Cao, and X. N. Zhou, “The Melting Point, Latent Heat of Solidification, and Enthalpy for Both Solid and Liquid Gt-Al2O3 in the Range 550-2400 K,” International Journal of Thermophysics, Vol. 7, No. 4, 1986.
    41.C. Yan, L. J. Li, D. S. Li, “Experimental Measurement on the Absorption Coefficients of Al2O3 Ceramics to CO2 Laser Radiation,” 湖南大學學報自然科學版, Vol. 35, pp. 41-44, 2008.
    42.R. J. Moffat, “Describing the uncertainties in experimental results,” Experimental Thermal and Fluid Science 1 (1988) 3–17.
    43.H. Martin, “Heat Transfer between Impinging Gas Jets and Solid Surface,” in J.P. Hartnett and T.F. Irvine, Jr., Eds., Advance in Heat Transfer, Vol. 13, Academic Press, New York, 1977.
    44.C. Glynn, T. O’ Donovan, and D. Murray, “Jet Impingement Cooling,” Proceedings of the 9th UK National Heat Transfer Conference, Manchester, England, September 5–6, Paper No. PS3-01, 2005.
    45.黃毅文, “數值模擬雷射劈裂技術應用於不同玻璃之熱傳分析。”國立
    成功大學機械工程學系碩士論文, 2014.
    46.胡珀紳, “火焰輔助雷射加工之基礎研究。”國立雲林科技大學機械工程學系碩士論文, 2013.
    47.Y. A. Cengel, “Heat and Mass Transfer: A Practical Approach, McGraw-Hill,” New York, 2006.

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE