| 研究生: |
劉欣昀 Liu, Hsin-Yun |
|---|---|
| 論文名稱: |
不同水文歷線影響水下辮狀河道演化之研究:實驗及數值模擬 Evolution of Submarine Braided Channels In Response to Different Hydrograph : Experiments and Numerical Model |
| 指導教授: |
賴悅仁
Lai, Yueh-Jen |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 水利及海洋工程學系 Department of Hydraulic & Ocean Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 133 |
| 中文關鍵詞: | 水下辮狀河道 、異重流 、水文歷線 、動態河道辮狀指數 、二維水理模式 |
| 外文關鍵詞: | Submarine braided channel, Density currents, Hydrograph, iRIC |
| 相關次數: | 點閱:42 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
水下辮狀河道是受到突發和多變的濁流事件趨動而形成的水下河道。本研究利用小尺度物理實驗模型,透過飽和鹽水模擬深海濁流,以探討水下辮狀河道受到不同的水文歷線影響下之形貌演化。實驗結果顯示,水下辮狀河道之形貌會隨著流量變化而改變,在設計水文歷線下之形貌變化包含:(1)當流量漸增時,異重流匯聚並下切形成較深之河道,發展由單一主河道控制且河幅寬廣之形貌特徵;(2)當流量漸減時,異重流從主河道開始切割並向外擴張,發展出由多條河道與沙洲交織而成的水下辮狀河道;(3)當流量維持穩定時,水下辮狀形貌對應流量發展出穩定之形貌趨勢。此外,當流量漸增時,動態河道辮狀指數(active braiding intensity, BIA)會下降;當流量漸減時,動態河道辮狀指數則會上升;當水文歷線保持穩定流量時,動態河道辮狀指數會以臨界時間(critical time, Tc)為界,分成兩個階段:(1)河道發展上升段,動態河道辮狀指數會隨時間持續上升;(2)穩定發展段,動態河道辮狀指數則為趨於穩定。最後,本研究透過二維水理模式(iRIC),以實驗之地形資料為起始地形,並給定實驗中率定之流量參數進行動床數值模擬。透過敏感度分析可以率定出各項參數,並將模擬結果與實驗結果比較。雖然初步的模擬成果無法與實驗結果完全相符,但是可以藉由無因次參數探討模式與實驗結果之關聯性,分析之成果皆有助於推展水下辮狀河道之形貌動力學。
The development of submarine braided channels is affected by sudden and variable turbidity events. In this study, we used a small-scale physical model to explore the effects of different hydrographs on the submarine braided channels, and conducted experiments with three different hydrographs and constant flow to be control group. According to different flow settings, divided into simple hydrograph, semi-simple hydrograph, and compound hydrograph.
From the experiments results, we found that no matter what type of the hydrographs, the inflow will dominate the morphology development of the submarine braided channels. With the inflow increase, a single channel morphology will be formed, and the morphology of the submarine braided channels is less active; when the inflow decreases, the density currents will cut and incise to expends outward, developing a complex braided channel network; under the constant flow rate, the morphology of the submarine braided channel will be divided into two phases, increasing phase and stability phase, separately.
In addition, we simulated the evolution process of the submarine braided channel through a two-dimensional hydraulic model (iRIC). We calibrated the sensitivity analysis, and compared the experimental results with the simulations. Although the results of simulation cannot fully present the actual current distribution of flow, we can used dimensionless stream power or active braiding intensity (BIA) to discussed the trends of submarine braided channels with simulated and experimental results. These analysis results are helpful to promote the research on the morphodynamics of the submarine braided channels.
Abreu, V., Sullivan, M., Pirmez, C., & Mohrig, D. (2003). Lateral accretion packages (LAPs): an important reservoir element in deep water sinuous channels. Marine and Petroleum Geology, 20(6-8), 631-648.
Asahi, K., Shimizu, Y., Nelson, J., & Parker, G. (2013). Numerical simulation of river meandering with self‐evolving banks. Journal of Geophysical Research: Earth Surface, 118(4), 2208-2229.
Babonneau, N., Savoye, B., Cremer, M., & Bez, M. (2010). Sedimentary architecture in meanders of a submarine channel: detailed study of the present Congo turbidite channel (Zaiango project). Journal of Sedimentary Research, 80(10), 852-866.
Bertoldi, W., Zanoni, L., & Tubino, M. (2009). Planform dynamics of braided streams. Earth surface processes and landforms, 34(4), 547-557.
Brice, J. C. (1964). Channel patterns and terraces of the Loup Rivers in Nebraska: US Government Printing Office.
Dill, R. F., Dietz, R. S., & Stewart, H. (1954). Deep-sea channels and delta of the Monterey submarine canyon. Geological Society of America Bulletin, 65(2), 191-194.
Egozi, R., & Ashmore, P. (2008). Defining and measuring braiding intensity. Earth surface processes and landforms, 33(14), 2121-2138.
Egozi, R., & Ashmore, P. (2009). Experimental analysis of braided channel pattern response to increased discharge. Journal of Geophysical Research: Earth Surface, 114(F2).
Ferguson, R., & Church, M. (2004). A simple universal equation for grain settling velocity. Journal of Sedimentary Research, 74(6), 933-937.
Foreman, B. Z., Lai, S. Y., Komatsu, Y., & Paola, C. (2015). Braiding of submarine channels controlled by aspect ratio similar to rivers. Nature Geoscience, 8(9), 700-703.
Gamboa, D., Alves, T. M., & Cartwright, J. (2012). A submarine channel confluence classification for topographically confined slopes. Marine and Petroleum Geology, 35(1), 176-189. Retrieved from <Go to ISI>://WOS:000305917500014. doi:10.1016/j.marpetgeo.2012.02.011
Germanoski, D., & Schumm, S. (1993). Changes in braided river morphology resulting from aggradation and degradation. The Journal of Geology, 101(4), 451-466.
Hein, F. J., & Walker, R. G. (1982). The Cambro‐Ordovician Cap Enragé Formation, Queébec, Canada: conglomeratic deposits of a braided submarine channel with terraces. Sedimentology, 29(3), 309-352.
Hong, L. B., & Davies, T. (1979). A study of stream braiding: Summary. Geological Society of America Bulletin, 90(12), 1094-1095.
Inoue, T., Iwasaki, T., Parker, G., Shimizu, Y., Izumi, N., Stark, C., & Funaki, J. (2016). Numerical simulation of effects of sediment supply on bedrock channel morphology. Journal of Hydraulic Engineering, 142(7), 04016014.
Inoue, T., Izumi, N., Shimizu, Y., & Parker, G. (2014). Interaction among alluvial cover, bed roughness, and incision rate in purely bedrock and alluvial‐bedrock channel. Journal of Geophysical Research: Earth Surface, 119(10), 2123-2146.
Jang, C.-L., & Shimizu, Y. (2005a). Numerical simulation of relatively wide, shallow channels with erodible banks. Journal of Hydraulic Engineering, 131(7), 565-575.
Jang, C.-L., & Shimizu, Y. (2005b). Numerical simulations of the behavior of alternate bars with different bank strengths. Journal of Hydraulic Research, 43(6), 596-612.
Kasprak, A., Brasington, J., Hafen, K., Williams, R. D., & Wheaton, J. M. (2019). Modelling braided river morphodynamics using a particle travel length framework. Earth Surface Dynamics, 7(1), 247-274.
Lai, S. Y., Hung, S. S., Foreman, B. Z., Limaye, A. B., Grimaud, J. L., & Paola, C. (2017). Stream power controls the braiding intensity of submarine channels similarly to rivers. Geophysical Research Letters, 44(10), 5062-5070.
Marcus, W. A., Roberts, K., Harvey, L., & Tackman, G. (1992). An evaluation of methods for estimating Manning's n in small mountain streams. Mountain Research and Development, 227-239.
Mishra, J., Inoue, T., Shimizu, Y., Sumner, T., & Nelson, J. M. (2018). Consequences of abrading bed load on vertical and lateral bedrock erosion in a curved experimental channel. Journal of Geophysical Research: Earth Surface, 123(12), 3147-3161.
Nelson, J. M., Shimizu, Y., Takebayashi, H., & McDonald, R. (2010). The international river interface cooperative: public domain software for river modeling. Paper presented at the 2nd Joint Federal Interagency Conference, Las Vegas, June.
Parker, G. (1976). On the cause and characteristic scales of meandering and braiding in rivers. Journal of fluid mechanics, 76(3), 457-480.
Peirce, S., Ashmore, P., & Leduc, P. (2018). The variability in the morphological active width: Results from physical models of gravel‐bed braided rivers. Earth surface processes and landforms, 43(11), 2371-2383.
Romagnoli, C., Casalbore, D., & Chiocci, F. (2012). La Fossa Caldera breaching and submarine erosion (Vulcano island, Italy). Marine Geology, 303, 87-98.
Rust, B. R. (1977). A classification of alluvial channel systems.
Schuurman, F., Shimizu, Y., Iwasaki, T., & Kleinhans, M. (2016). Dynamic meandering in response to upstream perturbations and floodplain formation. Geomorphology, 253, 94-109.
Shimizu, Y., Nelson, J., Arnez Ferrel, K., Asahi, K., Giri, S., Inoue, T., Kimura, I. (2020). Advances in computational morphodynamics using the International River Interface Cooperative (iRIC) software. Earth surface processes and landforms, 45(1), 11-37.
Williams, R., Measures, R., Hicks, D., & Brasington, J. (2016). Assessment of a numerical model to reproduce event‐scale erosion and deposition distributions in a braided river. Water resources research, 52(8), 6621-6642.
Wynn, R. B., Cronin, B. T., & Peakall, J. (2007). Sinuous deep-water channels: Genesis, geometry and architecture. Marine and Petroleum Geology, 24(6-9), 341-387.
許世彥,2021,「以 Nays2DH 模式探討辮狀河川之河相演變 -以大甲溪為例」,逢甲大學水利工程與資源保育學系碩士論文,1-176。
石軒寧,2020,「水砂量影響辮狀河川形貌演化之大型物理實驗及二維模式模擬」,成功大學水利及海洋工程研究所碩士論文,1-211。
黃彥鈞,2020,「寬度及水砂比影響水下辮狀河道演化之研究:實驗與水流模式開發」,成功大學水利及海洋工程研究所碩士論文,1-144。
張棠羽,2019,「以實驗方法探究向下丁壩對河道形貌之影響」,成功大學水利及海洋工程研究所碩士論文,1-110。
唐高晴,2018,「河寬及水流功率影響海底辮狀河道之實驗研究」,成功大學水利及海洋工程研究所碩士論文,1-100。