| 研究生: |
陳俊源 Chen, Gen-Yan |
|---|---|
| 論文名稱: |
砂管柱連續流甲苯分解菌共代謝三氯乙烯之研究 The Study on the Bioremediation of Trichloroethylene Cometabloism Using Continuous Sand Column. |
| 指導教授: |
高銘木
Kao, Ming-Muh |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程學系 Department of Environmental Engineering |
| 論文出版年: | 2004 |
| 畢業學年度: | 92 |
| 語文別: | 中文 |
| 論文頁數: | 115 |
| 中文關鍵詞: | 管柱連續流 、甲苯分解菌 、三氯乙烯 、甲苯 、共代謝 、地下水 |
| 外文關鍵詞: | aquifer., sand column, groundwater, cometabolism, toluene, trichloroethylene, TCE |
| 相關次數: | 點閱:140 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究目的在探討以砂管柱連續流裝置,接種甲苯解菌,在進流甲苯10ppm及25ppm、不同水力停留時間(8.5、15及17小時)的操作條件下,對三氯乙烯0.5、1.0及3ppm之去除效率之影響,並尋求最佳操作條件。
第一階段探討限制因子(limiting factor),第二階段繼續探討低濃度三氯乙烯共代謝去除效率,第三階段探討高濃度三氯乙烯共代謝去除效率,第四階段探討高低不同濃度甲苯造成之生物競爭基質效應,另外再探討甲苯分解菌當外來細菌,植入遭污染之管柱,進行優勢甲苯分解菌對系統共代謝三氯乙烯還原能力之研究。
第一階段管柱連續流進流20ppm甲苯(實測進流16.3-18.1ppm)、低濃度TCE 1ppm及0.5ppm(實測0.6-0.8ppm及0.29-0.38 ppm),管柱出流菌落數約6x106 cfu,TCE濃度1ppm及0.5ppm對出流菌落數影響不大,對三氯乙烯去除率都可高達90%以上,兩段管柱總去除效果都可使三氯乙烯達到第二類法定標準0.05ppm以下(土壤污染防治法),而在高濃度TCE試驗部分,進流3ppmTCE時(實測約在2.2ppm),出流菌落數及三氯乙烯去除率有明顯之降低,菌落數約從6.0x106降至1.1x106cfu去除率在68-74%不等,且有越來越低之趨勢,高濃度TCE第二段管柱去除率約在35%下,推測是高濃度TCE產生較多之中間毒性產物,減低第二段生物活性,要使得排放濃度達到法定標準以下需往提高更多段之管柱或是提高更長水力停留時間。系統再活化之研究上,發現三氯乙烯去除率會因添加甲苯優勢菌有些微提高(從35%提升至45-50%),顯然外來優勢菌添加有助於系統回復。在競爭基質研究上,發現進流10ppm(低基質)及25ppm(高基質)甲苯、三氯乙烯1ppm,其去除率初期(7天內)前者高達90%後者約在80%,但後期甲苯10ppm組別三氯乙烯去除率隨時間降低,在20天實驗約降到80%。
The purpose(s) of this study is to research the co-metabolism of trichloroethene (TCE) in the continuous reactor of sand column(s), growing the bacteria No.T1 which could metabolize toluene and co-metabolize TCE effectively. To discuss the best operational state(s) in co-metabolizing TCE of 0.5, 1.0 and 3.0 ppm under the hydraulic retention of time (HRT) in 8.5 hr and 17 hr, and the inflows concentration of toluene (substrate) are 20 and 25 ppm as followed the five steps.
In the first step we discover the limiting factor of co-metabolizing TCE in sand column is H2O2. In the second and third steps found that low concentration of TCE about 0.5ppm and 1ppm could be metabolism well in about 90% in two sections of columns, and the effluent concentration of TCE in about 0.05ppm or below it which is a statutory standard of Taiwan; but when the affluence of TCE is in high concentration about 2.3ppm, made the removal effect in about 68-74% or less and the effluence of bacterial counts decreased from 6×106 to almost 1.1×106 cfu/ml , and next section of column is 35%, it can be conjectured that poisonous intermediate(s) influenced the bio-active. In the step of competition in oxygenase of substrates found that inflow the low substrate of toluene in concentration of about 10 ppm can metabolize TCE superiorly than 25ppm and the effect are 90% and 80%. But after 7 days the superiority disappeared, it may because low concentration of substrate result in the bacterial active reducing. In the last step, when we paused the system for two day, the ability of co-metabolizing TCE change weaker with inflow the same concentration of toluene, and growing No.T1 bacteria to the sand column again, the system can recover in several level, recovering the effect from 35% to 45-50%.
The No. T1 bacteria can be utilized in bioremediation of groundwater, but it need further study to research the active of the bacteria T1 in in-situ field.
環境法令研究會編集,「日本環境六法」,日本,1998。
行政院環境保護署,1998 (http://www.epa.gov.tw)
行政院勞工委員會,「物質安全資料表及參考範例」,1997
李安,「職場之隱形殺手-揮發性有機化合物」,環保資訊,第二期,第6-10頁,1992。
李正怡,「利用生物濾床共代謝三氯乙烯效率提升之研究」,成功大學環境工程學研究所,碩士論文,1999,第31頁。
吳博章,「半連續培養泥漿法共代謝三氯乙烯生物降解之研究」,成功大學環境工程學研究所碩士論文,2003。
何佳諺「懸浮式連續流甲苯共代謝三氯乙烯之研究」,成功大學環境工程學研究所碩士論文,2003。
蔡文田,「含氯有機溶液之毒性及新陳代謝機制」,工業污染防治,第47期,第171-182頁,1993。
蔡文田,邱申彥,「蒸氣脫酯用含氯溶劑之特性管制和污染預防」,工業污染防治,第41期,pp.145-160,1992
郭家倫、曾迪華、黃雪莉,「好氧性共代謝生物分解含氯脂肪族化合物之回顧與分析」,國立中央大學環境工程學刊,1998,第5期,第23-38頁。
張峻嘉 `酚分解菌共代謝三氯乙烯之研究(管柱連續流試驗)`國立中興大學環境工程研究所碩士論文 1999。
Adam, K. S. and Thomas, K. W., ’’Trichloroethylene Mineralization in a Fixed-Film Bioreactor Using a Pure Culture Expressing Constitutively Toluene orth-Monooxygenase’’, Biotechnology and bioengineering. 1997, Vol.55, No.4, pp. 674-685.
Alfred D. Steinberg and John M. D., ’’ Have animal Data Been Used Inapproprately to Estimate Risks to Humans from Environmental Trichloroethylene?’’ Regulatory Toxicology and Pharmacology, 1993, Vol.18, pp. 137-153.
Alvarez-Cohen, L; McCarty, P. L. Environ. Sci. Technol. 1991,Vol. 25, pp1387.
Beller, H.R., Reinhard, M. and Grbic-Galic, D. ’’Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment culture.’’ 1992,Appl. Environ. Microbiol. Vol.58, pp.3192-3195.
Beeman,R. E.., C. A. Bleckmann,’’Sequential anaerobic-aerobic treatment of an aquifer contaminated by halogenated organics: field results’’, J. of contaminant hydrology,2002, Vol.57, pp. 147-159.
Bourquin, A. W., D. C. Mosteller, R. L. Olsen, M. J. Smith, and R.F. Reardon. ’’Aerobic bioremediation of TCE-contaminated groundwater: bioaugmentation with Burkholderia cepacia PR1’’In The Fourth International In Situ and On-Situ bioremediation Symposium,1977, New Orleans, LA. Columbus:Battelle Press.
Bull., R. J., Sanchez, I. M., Nelson, M. A., Larson. J. L., and Lansing, A. J. ’’ Liver tumor induction in B6C3F1 mice by dichloroacetate and trichloroacetate.’’ Toxicology, 1990, Vol. 63, pp. 341-359.
Carol Kuei-Jyum Yeh, Hung-Ming Wu, Ting-Chien Chen, ’’Chemical oxidation of chlorinated non-aqueous phase liquid by hydrogen peroxide in natural sand system.’’ J. of Hazardous Materials. 2003, Vol.96 pp. 29-51.
Chang, H. L. and L. Alvarez-Cohen, ’’ Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol.’’, Biotechnology and Bioengineering, 1995,Vol. 45, pp. 440-449.
Dabrock, B., J. Riedel, J. Bertram, and G. Gottschalk, ’’Isoprophylbenzene (cumene)-a new substrate for the isolation of trichloroethene-degrading bacteria’’ Arch. Microbiol., 1992, Vol. 158, pp. 9-13.
Duba A. G.., K. J. Jackson, M. C. Jovanovich,. R. B. Knapp, and R. T. Taylor.’’TCE Remediation using in-situ, resting-state bioaugmentation’’Environ. Sci. Technol. 1996, Vol.30, pp. 1982-1989.
Dybas, M. J., M. Barcelona, S. Bezborodnikov, S. Davies, L. Forney, H. Heuer, O. Kawka, T. Mayotte, L. Sepulveda-Torres, K. Smalla, M. Sneathen, J. Tiedje, T. Voice, D. C. Wiggert, M. E. Witt, and C. S. Criddle.’’ Pilot-scale evaluation of bioaugmentation for in-situ remediation of a carbon tetrachloride-contaminated aquifer.’’ Environ. Sci. Technol. 1998, Vol. 32, pp. 3598-3611.
Edwards, A.C. and Grbic-Galic. D.’’ Complete mineralization of benzene by aquifer microorganisms under strictly anaerobic conditions.’’ Appl. Environ. Microbiol. 1992,Vol.58, pp. 2663-2666.
Ensign, S. A., M. R. Hyman, and D. J. Arp, ’’Cometabolism of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain’’, Appl. Enviro. Microbiol., 1992, Vol. 58, No. 9, pp. 3038-3046.
Ewers, J., W. Clemens, and H. J. Knackmuss, ’’Biodegradation of chloroethenes using isoprene as co-subatrate’’, International Symposium on Environmental biotechnology, 1991,Vol.1, Royal Flemish Society of Engineers: Ostead, Belgium, pp. 77-83.
Fathepure, B. Z., J. P. Nengu, and S. A. Boyd, ’’Anaerobic bacteria that dechlorinate perchloroethene’’, Appl. Environ. Microbiol.,1993, Vol. 59, No. 6, pp. 1911-1918.
Fathepure, B. Z., and T. M. Vogel, ’’Complete degradation of polychlorinated hydrocarbons by two-stage biofilm reactor’’, Appl. Environ. Microbiol.,1991, Vol. 57, No. 12, pp. 3418-3422.
Fetter , C.W. ’’Contaminant Hydrogeology’’1999, Second Edition, pp 31-33.
Fogel, M. M., A. R. Taddeo, and S. Fogel, ’’Biodegradation of chlorinated ethanes by a methane-utilizing mixed culture’’, Appl. Environ. Microbiol., 1986, Vol. 51 No. 4, pp. 720-724.
Folsom, B. R., P. J. Chapman, and P. H. Pritchard, ’’Phenol and trichloroethylene degradation by Pseudomonas cepacia G4 : Kinetics and inter- action between substrate,’’ Appl. Enviro. Microbiol., 1990, Vol. 56, pp. 1279-1285.
Fox, B. G.., J. G.. Borneman, L. P. Wackett, and J. D. Lipscomb, ’’Haloalkene oxidation by the soluble methane monooxygenase from Methylosinus trichosporium OB3b: mechanistic and environmental applications’’, Biochemistry, 1990 ,Vol. 29, pp. 6419-6427.
Frazer, A. C. Ling, W. and Young, L. Y.,’’Substrate induction and metabolite accumulation during anaerobic toluene utilitation by denitrifying conditions by a constructed bacterium’’,Appl. Enviro. Microbial.,1993,Vol.59,pp.3157-3160.
Fries, M. R., L. J. Forney, and J. M. Tiedje,’’Phenol and toluene degrading microbial population from an aquifer in whish successful trichloroethene cometabolism occurred’’, Appl. Environ. Microbiol., 1997, Vol. 63, pp.1523-1530.
Gary, D. H. and P. L. McCarty ’’ Field Evaluation of in Situ Aerobic Cometabolism of Trichloroethylene and Three Dichloroethylene Isomers Using Phenol and Toluene as the Primary Substrates.’’ Environ Sci &Techn.1995,Vol.29. pp1628-1637.
Hensse, M. J. C., A. W. Van der Werf, S. Keuning, C. Hubach, R. Blokzijl, E. van Keulen, B. Alblas, C. Haasnoot, H. Boender, and E. Meijerink.’’Engineered full scale bioremediation of chlorinated ethylenes’’In The Sixth international in situ and On-Site Bioremediation Symposium, San Diego, CA. 2001.
Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty,’’Microcosm and in situ field studies of enhanced biotransformation of trichloroethylene by phenol-utilizing microorganisms’’,Appl. Environ. Microbiol., 1993a Vol.59,No.7, pp. 2277-2285.
Hopkins, G. D., J. Munakata, L. Semprini, and P. L. McCarty,’’Trichloroethylene concentration effects on pilot field-scale in situ groundwater bioremediation by phenol-oxidizing microorganisms’’, Environ. Sci. Technol.,1993b Vol.27, pp. 2542-2547.
Hutchins,S.R.’’Biodegradation of monoaromatic hydrocarbons by aquifer microorganisms using oxygen, nitrate,or nitrous oxide as the terminal electron acceptor.’’ Appl. Environ. Microbiol.1991, Vol.57,pp.2403-2407
Jahng D, Kim CS, Hanson RS, Wood TK’’ Optimization of trichloroethylene degradation using soluble methane monooxygenase of Methylosinus trichosporium ON3b expressed in recombinant bacteria.’’ Biotechnol. Bioeng. 1996, Vol. 51, pp. 349-359.
Joseph B. Hughes, Karen L. Duston, C. Herb Ward.’’ Engineered Bioremediation’’ GWRTAC(Ground-Water Remediation Technologies Analysis Center) Technology Evaluation Report 2002.pp.13-14(a)
Joseph B. Hughes, Karen L. Duston, C. Herb Ward.’’ Engineered Bioremediation’’ GWRTAC(Ground-Water Remediation Technologies Analysis Center) Technology Evaluation Report 2002.pp.17(b).
Joseph G. Leahy, Karen D. Tracy, Michael H. Eley. ’’Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria.’’ FEMS Microbiology Ecology.2003,Vol.43.pp271-276.
Joseph G. Leahy, Ronald H. Olsen’’ Kinetics of degradation by toluene-oxidizing bacteria as a function of oxygen concentration, and the effect of nitrate.’’ FEMS Microbiology Ecology. 1997, Vol.23, pp23-30.
Kao, C. M., S. C. Chen, M. S. Su, ’’ Laboratory column studies for evaluating a barrio system for providing oxygen and substrate for TCE biodegradation.’’ Chemosphere, 2001, Vol. 44, pp. 925-934.
Keener ,W.K., M.E.Watwood, K.D. Schaller, M.R. Walton ,J.K. Partin, W.A.Smith, S.R.Clingenpeel. “Use of selective inhibitor and chromogenic substrates to differentiate bacteria based on toluene oxygenase activity”, J. of Microbiological Methods,2001 ,Vol.46, pp171-185.
Kim Y, Ayoubi P, Harker AR’’ Constitutive expression of the cloned phenol hydroxylase gene from Alcaligenes eutrophus JMP134 and concomitant trichloroethylene oxidation.’’ Appl. Environ. Microbiol ,1996, Vol.62 pp. 3227-3233.
Koenigsberg, S. S., and C. A. Sandefur. ’’The Use of Hyrogen Release Compound for the Accelerated Bioremediation of Anaerobically Degradable Contaminants: The advent of Time-Release Electron Donors.’’ Remediation Journal,1999, Vol. 10, pp. 31-53.
Koenigsberg, S. S., and C. A. Sandefur. ’’ The Use of Oxygen Release Compound for the Accelerated Bioremediation of Aerobically Degradable Contaminants: The advent of Time-Release Electron Acceptors.’’ Remediation Journal,1999, Vol. 10, pp.3-29.
Large, P. J., ‘’Methylotrophy and methanogenesis’’, American Society for Microbiology, Washington DC,1983, pp.25-26.
Lesson, A. and V. S. Magar eds. Sixth International In Situ and On-Site Bioremediation Symposium, June 2002.
Little C. D., A . V. Palumbo, S. E. Herbes,M. E. Lidstrom, R. L. Tyndall, and P. J. Gilmer.’’ Trichloroethylene Biodegradation by a Methane-Oxidizing Bacterium.’’ Applied and Environment Microbiology,1998,Apr,pp. 951-956.
Lovelace,K.A.,’’Evaluating the technical impracticability of groundwater cleanup’’, International Conference Groundwater Quality Protec- tion,Taipei,p.165-179,1997.
Major, D. W. ; McMaster, M. L.; Cox, E. E. Lee, B. J. ; Gentry, E. E., Hendrickson, E., Edwards, E., Dworatzek, S. ’’Successful Field Demonstration of Bioaugmentation to Degrade PCE and TCE to Ethene.’’The Sixth Internationak In Situ and On-Site Bioremediation Symposium, San Diego, CA. 2001.
Marcos R. Fries, Larry J. Forney, et al.”Phenol-and Toluene- Degrading Microbial Populations from an Aquifer in Which Successful Trichloroethene Cometabolism Occurred” Appl. And Environment Microbiology,1997,pp.1523-1530.
Malcolm s. Shields, Stacy O. Montgomery, Stephen M. Cuskey, Peter J. Chapman P.H. Pritchard.’’Mutants of Pseudomonas cepacia G4 Defective in Catabolism of Armoatic Compounds and Trichloroethylene’’ Appl. And Environment Microbiology,1991,Vol.57 No.7,pp1935-1941.
McCarty, P. L., ’’Bioengineering issuses related to in situ remediation of contaminated soils and groundwater.’’ Environ. Biotechnol. 1988, pp. 143-161.
McCarty P.L., Semprini L ’’Ground-water treatment for chlorinated solvents.’’ In handbook of Bioremediation. 1994, pp. 87-116.
McCarty, P. L. M. N. Goltz, G. D. Hopkins, M. E. Dolan, J. P. Allan, B. T. Kawakami, and T. J. Carrothers.’’ Full-scale evaluation of in situ cometabolic degradation of trichloroethylene in groundwater through toluene injection ’’Enviro. Sci. Technol. 1998, Vol. 32, pp 88-100.
Michael F. Tschantz ,John P. Bowman, Terry L. Donaldson et al,’’ Methanotrophic TCE Biodegradation in a Multi-Stage Bioreactor’’. Environ. Sci Technol. 1995,Vol. 29,pp. 2073-2082.
Miller, C. T., and W. J. Weber, Jr. ’’ Modeling organic contamination partitioning in ground-water systems.’’ Ground Water,1984,Vol.22, No.5,84-92.
Mio Takeuchi, Kenji Nanba, Hiroshi Iwamoto, Hisashi Nirei, Osamu Kazaoka and Ken Furuya. ’’Distribution And Seasonal Variation of Methanotrophs in Trichloro- ethylene Contaminated Groundwater.’’ 2000,Water Research Vol.34 No.15 pp3717-3724.
Munakata-Marr J, McCarty P. L., Shields M.S, Reagin M, Francesconi S.C ‘’Enhancement of Trichlorethylene Degradation in Aquifer Microcosms Bioaugmented with Wild Type and Genetically Altered Burkholderia(Pseudomonas) cepacia G4 and PR1’’Environ. Sci Tech 1996 Vol.30, pp 2045-2052.
Oldenhuis, R., R. L. J.M. Vink, D. B Janssen, and B. Witholt, ’’Degradation of chlorinated aliphatic hydrocarbons by Methylosinus trichosporium OB3b expressing soluble methane monooxygenase’’, Appl. Environ. Microbiol.,1989, Vol. 55, No. 11, pp. 2819-2826.
Palumbo, A. V., S. P. Scarborough, S. M. Pfiffner, T. J. Phelps.’’Influence of nitrogen and phosphorus on the in situ bioremediation of trichloroethylene ’’, Appl. Biochemistry and biotechnology, 1995, Vol. 51,52, pp. 635-647.
Prakash, S. M., S. K. Gupta, ’’Biodegradation of tetrachloroethlyene in upflow anaerobic sludge blanket reacter’’, Bioresource Technology, 2000, Vol. 72 pp. 47-54.
Ridgeway ,H.F.. J.Safarik, D. Phipps, P. Carl, D. Clark.’’ Identification and catabolic activity of well-derived gasoline-degrading bacteria and a contaminated aquifer’’ Appl. Environ. Microbiol.1990, Vol.56. pp3565-3575.
Richmond, R. E., Deangelo. A. B., Potter, C. L., and Daniel, F. B.,’’ The role of hyperplastic nodules in dichloroacetic acid-induced hepatocarcinogenesis in B6C3F1 male mice.’’ Carcinogenesis, 1991, Vol.12, pp. 1383-1387.
Rooney-Varga ,R.T. J., C.V. Gaw, D.R.Lovley. ’’Anaerobic benzene oxidation in the Fe(III) reduction zone of petroleum-contaminated aquifers’’ Enviro. Sci. Technol. 1998, Vol.32, pp.1222-1229.
Sadhana Chauhan, Paola Barbieri, and Thomas K. Wood.’’ Oxidation of Trichloroethylene, 1,1-Dichloroethylene, and Chloroform By Toluene/o-Xylene Monooxygenase form Pseudomonas stutzeri OX1.’’ Appl. Environ. Microbiol., 1998, Vol.64, pp. 3023-3024.
Shields,M.S.,Montgomery,S.O.,Chapman,P.J.,Cuskey,S.M.,Pritchard,P.H.,’’Novel pathway of toluene catabolism in the trichloroethylene-degrading bacterium G4.’’Appl. Environ. Microbiol.1989,Vol.55, pp.1624-1629.
Solley,W.B.,R.R.Pierce and H.A.Perlman ,’’Estimated use of water in the United States in 1990.’’U.S.Geological Survery Circular 1081,1993 ,p76.
Steffan, R. J., K. L. Sperry, M. T. Walsh, S. Vainberg, and C. W. Condee. ’’Field-scale evaluation of in situ bioaugmentation for remediation of chlorinated solvents in groundwater.’’ Environ Sci. Techol. 1999, Vol. 33, pp.2771-2781.
Suyama A, Lwakiri R, Nobutada K, Nishi A, Nakamura K, Furukawa K’’ Engineering hybrid Pseudomoads capable of utillzing a wide range of aromatic hydrocarbons and of efficient degradation of trichloroethylene’’J. Bacteriol., 1996, Vol. 178, pp. 4039-4046.
Vogel, T. M., C. S. Criddle and P. L. McCarty,’’Transformation of halogenated aliphatic compounds’’, Environ. Sci. Techol., 1987, Vol. 21, pp.722-736.
Wackett, L. P. and D. T. Gibson, ’’Degradation of trichloroethylene by toluene dioxygenase in whole-cell studies with Pseudomonas putida F1’’, Appl. Environ. Microbiol. 1988,Vol. 54, No. 7, pp. 1703-1708.
Wackett, L. P. and S. R. Householder, ’’Toxicity of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase’’, Appl. Environ. Microbiol., 1989b, Vol. 55, No. 11, pp. 2960-2964.
Wilson, J. T. and B. G.. Wilson, ’’Biotransformation of trichloroethylene in soil’’, Appl. Environ. Microbiol. 1985, Vol.49, No. 1, pp.242-243.
Winter, R. B., K. M. Ten, and B.D. Ensley, ’’ Efficient degradation of trichloroethylene by a recombinant Escherichia coli.’’ Bio. Technology, Vol. 7, 1989, pp. 282-285.