簡易檢索 / 詳目顯示

研究生: 施柏維
Shi, Bo-Wei
論文名稱: 應用解耦合直接控制於全數位化脈寬調變馬達驅動系統之研究
Study of Decoupled Direct Control for Induction Motor Drives with Digitalized PWM
指導教授: 陳添智
Chen, Tien-Chi
學位類別: 碩士
Master
系所名稱: 工學院 - 工程科學系
Department of Engineering Science
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 86
中文關鍵詞: 空間電壓向量全數位脈寬調變解耦合直接控制
外文關鍵詞: digitalized pulse width modulation, space voltage vector, decoupled direct control
相關次數: 點閱:115下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   傳統的間接磁場導向控制 (FOC)技術需要非線性座標軸轉換,這將會使微處理機計算的時間變長。為了改善這個缺點,本文首先探討解耦合直接控制(Decoupled Direct Control, DDC)感應馬達驅動系統。解耦合直接控制建構於一解耦合矩陣,此矩陣是分別對轉子磁通量和轉矩做控制,來產生適當電壓命令使得回授的轉子磁通量和轉矩估測器估測出來的轉矩追隨轉子磁通量命令和轉矩命令,這方法的優點有:(1) 因為直接對轉子磁通量和轉矩作控制,所以並不需要座標軸轉換,可減少微處理機計算的時間,(2) 在電流迴路沒有使用控制器,可提升轉矩的暫態響應 。其次是利用空間電壓向量原理發展出全數位脈寬調變(Pulse Width Modulation, PWM)方法,以控制電壓源變流器(Voltage Source Inverter, VSI),其中頻率控制單元利用非零電壓向量之原理,來控制電壓源變流器輸出電壓頻率。而電壓控制單元利用零電壓向量之原理,來控制電壓源變流器輸出電壓大小,這方法提出具有適應性的表格,使我們可以輕易的調節表格內容得到有低諧波的定子電流,以減少轉矩脈動和切換損失。經由解耦合直接控制和全數位脈寬調變技術,可達到一良好的感應馬達驅動系統。

      最後以本論文所提出的控制架構搭配DSP TMS320F2812 具定點運算功能的32位元處理器和實驗室自行設計的馬達驅動電路,來完成一高效能感應馬達驅動系統。由模擬和實作的結果驗證所提出的控制方法優於傳統的間接磁場導向控制並具有良好的效能。

     The traditional indirect field-oriented control (FOC) needs nonlinear coordinate transformation and that will increase the computation time. To improve the above drawback, the decoupled direct control (DDC) for the induction motor drive is developed in this thesis. The decoupled direct control is based on a decoupled matrix, which is used to directly control torque and rotor flux to generate voltage command and make the estimated torque and rotor flux track to their command quickly. The method has some advantages: 1) Because of directly controlling the rotor flux and torque without coordinate transformation, the computational time can be decreased largely. 2) There is not any controller in current loop so the transient response of the torque and rotor flux can be improved.
    Next, using the space voltage vector theorem to develop a digitalized pulse width modulation (PWM) algorithm for voltage source inverter. The frequency control unit uses the principle of non-zero-voltage vectors to control the output voltage frequency of the voltage-source inverter and the voltage control unit uses the principle of zero-voltage vectors to control the output voltage magnitude of the voltage-source inverter. To reduce torque pulsation and switching loss, the algorithm proposes an adaptable table so that the low stator currents harmonic can be obtained by adjusting content of the adaptable table. Combining decoupled direct control scheme and digitalized PWM algorithm, a high-performance induction motor drive can be achieved.

     The proposed control scheme is implemented by using a 32-bit TMS320F2812 digital signal processor and motor driver circuit. Simulation and experiment results demonstrate the proposed control scheme is superior to the traditional FOC scheme and has good performance.

    摘要 I Abstract II Acknowledgements III Contents IV List of Figures and Tables VII Symbols XII Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Structure of the Thesis 4 Chapter 2 Principle of Decoupled Direct Control 5 2.1 The Mathematical Model of Induction Motor 5 2.2 Indirect Field-Oriented Control 7 2.3 Stator Flux Vector Control 8 2.4 Decoupled Direct Control 10 2.4.1 DDC Algorithm Architecture 11 2.4.2 Torque and Flux Estimator 16 Chapter 3 Digitalized Pulse Width Modulation 17 3.1 Flux Linkage Vector 17 3.2 Non-Zero-Voltage Vectors and Frequency Control 20 3.3 Zero-Voltage Vectors and Voltage Control 25 3.4 The Frequency and Voltage Control Algorithm 27 Chapter 4 Experiment Equipment 30 4.1 The Equipment Block 30 4.2 Introduction of TMS320F2812 Emulation Board 31 4.2.1 The Feature of TMS320F2812 31 4.2.2 TMS320F2812 Emulation Board Connector Positions 32 4.2.2.1 MP/MC Mode Select 33 4.2.2.2 Boot Mode Select 33 4.2.2.3 XF ( ) 34 4.2.2.4 Xilinx CPLD JTAG 35 4.2.2.5 XDS410PP JTAG 35 4.2.2.6 ADC/DAC Interface 36 4.2.2.7 Serial Port Interface 37 4.2.2.8 Digital I/O and Control Signal Interface 37 4.2.2.9 Motor Control Peripherals 39 4.2.2.10 DS1- LCD Control Module 40 4.2.2.11 Keyboard Control Module 40 4.2.2.12 Power Supply Connector, J7 41 4.2.2.13 eCAN Module Interface 41 4.2.2.14 RS232 Connector, J9 41 4.2.3 Peripherals overview 42 4.2.3.1 Power Management 42 4.2.3.2 ADC 44 4.2.3.3 DAC with SPI Interface 46 4.3 The Process of Software Control Program 48 4.4 The Motor Driver Circuit 50 4.4.1 Inverter 50 4.4.2 Time-Delay Circuits 51 4.4.3 Current Measurement Circuits with Hall Sensor 52 4.4.4 Shift and Scale Circuits 52 Chapter 5 Simulation and Experiment Results 57 5.1 Simulation Results 57 5.2 Experiment Results 71 Chapter 6 Conclusions 81 6.1 Conclusions 81 6.2 Suggestion for Further Possible Research 82 References 83 Vita 86

    [1] A. Pagel, A. S. Meyer and C. F. Landy, “The design of equalizer windings for lap-wound DC machines,” IEEE Transactions on Industry Applications, Vol. 37, No. 2, pp. 1000-1011, 2000.
    [2] R. J. Storey, T. A. Coombs, A. M. K. Campbell, R. A. Weller and D. A. Cardwell, “Development of superconducting DC machines using bulk YBCO,” IEEE Transactions on Applied Superconductivity, Vol. 9, No. 2, pp. 1253-1256, 1999.
    [3] Y. T. Kao and C. H. Liu, “Analysis and design of microprocessor-based vector-controlled induction motor drivers,” IEEE Transactions on Industrial Electronics, Vol. 39, No. 1, pp. 46-54, 1992.
    [4] G. W. Chang, G. Espinoza-Perez, E. Mendes and R. Ortega, “Tuning rules for the PI gains of field-oriented controllers of induction motors,” IEEE Transactions on Industrial Electronics, Vol. 47, No. 3, pp. 592-602, 2000.
    [5] E. Mendes and A. T. Araiza, “Experimental comparison between field oriented control and passivity based control of induction motors, ” in Proc. ISIE’97, Guimaraes, Portugal, pp. 84-88, 1997.
    [6] M. M. Bech, J. K. Pedersen and F. Blaabjerg, “Field-oriented control of an induction motor using random pulse-width modulation, ” IEEE Transactions on Industry Applications, Vol. 37, No. 6, pp. 1777-1785, 2001.
    [7] C. Rossi and A. Tonielli, “Robust current controller for three-phase inverter using finite-state automaton,” IEEE Transactions on Industrial Electronics, Vol. 42, No. 2, pp. 169-178, 1995.
    [8] F. J. Lin and C. M. Liaw, “Control of indirect field-orientated induction motor drives considering the effects of dead-time and parameter variations,” IEEE Transactions on Industrial Electronics, Vol. 40, No. 5, pp. 486-495, 1993.

    [9] J. Monteiro, G.. D. Marques and J. Palma, “A simplified stator flux vector control method in dq co-ordinates for induction machines,” IEEE Transactions on Industrial Electronics, Vol. 1, No. 4, pp. 271-276, 2000.
    [10] M. P. Kazmierkowski and A. B. Kasprowicz, “Improved direct torque and flux vector control of PWM inverter-fed induction motor drivers,” IEEE Transactions on Industrial Electronics, Vol. 42, No. 4, pp. 344-349, 1995.
    [11] D. Casadei, G. Serra and A. Tani, “Sensitive investigation of speed sensorless induction motor drive based on stator flux vector control,” in PESC, pp. 1055-1060, 1997.
    [12] C. E. Moucary, “Contribution to the study of direct control of torque and flux for induction machines: comparison of control methods-output regulation subspace concept-implementation of decoupled direct control laws,” Ph.D. dissertation, Univ. Paris 11, Orsay, France, 2000.
    [13] J. Jinhwan and N. Kwanghee, “A dynamic decoupling control scheme for high-speed operation of induction motors,” IEEE Transactions on Industrial Electronics, Vol. 46, No. 1, pp. 100-110, 1999.
    [14] W. R. Jong and C. L. Jung, “Decoupling and tracking control of induction motor drive,” IEEE Transactions on Electronics Systems, Vol. 38, No. 4, pp. 1357-1369, 2002.
    [15] Y. Kawabata, T. KawaKami, Y. Sasakura, E.C. Ejiogu and T. Kawabata, “New design method of decoupling control system for vector controlled induction motor,” IEEE Transactions on Power Electronics, Vol. 19, No. 1, pp. 1-9, 2004.
    [16] R. J. Wai and W. K. Liu, “Nonlinear decoupled control for linear induction motor servo-drive using sliding-mode technique,” IEE Proceedings Control Theory Application, Vol. 148, No. 3, pp. 217-231, 2001.
    [17] EI Moucary, C. Mendes and A. Razek, “Decoupled direct control for PWM inverter-fed induction motor drives,” IEEE Transactions on Industry Applications, Vol. 38, No. 5, pp. 1307-1315, 2002.
    [18] J. O. Pinto, B. K Bose and L. E. B da Silva , “A stator-flux-oriented vector-controlled induction motor drive with space-vector PWM and flux-vector synthesis by neural networks,” IEEE Transactions on Industry Applications, Vol. 37, No. 5, pp. 1308-1318, 2001.

    [19] B. K. Bose, Power Electronics and AC Drivers, Englewood Cliffs, NJ: Prentice-Hall, 1986.
    [20] J. Klima, “Analytical closed-form solution of a space-vector modulated VSI feeding an induction motor drive,” IEEE Transactions on Industry Applications, Vol. 17, No. 2, pp. 191-196, 2002.
    [21] T. G. Habetler, F. Profumo, M. Pastorelli and L. M. Tolbert, “Direct torque control of induction machines using space vector modulation,” IEEE Transactions on Energy Conversion, Vol. 28, No. 5, pp. 1045-1053, 1992.
    [22] S. Nonaka and Y. Neba, “A PWM GTO current source converter-inverter system with sinusoidal inputs and outputs,” IEEE Transactions on Industry Applications, Vol. 25, No. 1, pp. 76-85, 1989.
    [23] T. C. Chen, “Control of Voltage-source inverter using single-chip microprocessors,” INT. J. Electronic, Vol. 88, No. 4, pp. 473-483, 2001.

    下載圖示 校內:2006-08-01公開
    校外:2006-08-01公開
    QR CODE