| 研究生: |
吳璟昀 Wu, Jing-Yun |
|---|---|
| 論文名稱: |
找出去磷酸化反應中去磷酸胜肽訊號的最佳化條件 Optimization of Dephosphorylated Peptide Signals in Dephosphorylation Reaction |
| 指導教授: |
廖寶琦
Liao, Pao-Chi |
| 學位類別: |
碩士 Master |
| 系所名稱: |
醫學院 - 環境醫學研究所 Department of Environmental and Occupational Health |
| 論文出版年: | 2009 |
| 畢業學年度: | 97 |
| 語文別: | 中文 |
| 論文頁數: | 66 |
| 中文關鍵詞: | 磷酸胜肽 、磷酸化 、質譜儀 、去磷酸化反應 、鹼性磷酸酶 |
| 外文關鍵詞: | dephosphorylation reaction, phosphopeptide, phosphorylation, mass spectrometry (MS), alkaline phosphatase |
| 相關次數: | 點閱:102 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
鹼性磷酸酶已被廣泛用於去磷酸化反應中移除磷酸胜肽的磷酸根,而在質譜圖中比較去磷酸胜肽與原始磷酸胜肽的訊號表現會產生80 Da倍數的「質量偏移」現象,這種現象可用以尋找可能為磷酸胜肽的訊號位置。但鹼性磷酸酶試劑裡往往含有甘油的成分,還有幫助去磷酸化反應的反應用緩衝溶液所含有的多種鹽類,這兩類成分都會干擾液相層析結合質譜儀分析磷酸胜肽去磷酸化的訊號表現。因此本研究使用質譜分析經去磷酸化反應beta-酪蛋白的一段磷酸胜肽T6,去評估最恰當的鹼性磷酸酶使用量範圍及合適的反應用緩衝溶液,進而找出去磷酸化反應中去磷酸胜肽訊號的最佳化條件。藉由介質輔助雷射脫附離子化結合飛行時間質譜能快速得知1 pmol T6行去磷酸化反應的結果-在20 mM 碳酸氫銨緩衝溶液中,使用10的-5次方~1 U的鹼性磷酸酶是去磷酸化T6胜肽訊號的最佳化條件;由液相層析結合電噴灑離子化四極棒飛行時間質譜儀分析2 pmol T6行去磷酸化反應的結果-在20 mM 碳酸氫銨緩衝溶液中,使用10的-3次方~1 U的鹼性磷酸酶是去磷酸化T6胜肽訊號的最佳化條件。根據這些結果發現,相較在1X去磷酸化專用緩衝溶液中,行去磷酸化反應特定量的磷酸胜肽T6,在20 mM 碳酸氫銨緩衝溶液中所需的鹼性磷酸酶用量較少(為前者的1/600至1/10)。此外,若以超過1 U的AP使用量反應1 pmol的T6,那麼去磷酸化T6的胜肽訊號強度會有所減弱,這可能是因為AP試劑所含的甘油成分干擾所致。總結本研究描述在去磷酸化反應中,以不同的去磷酸化反應條件得到最佳化的去磷酸化T6胜肽質譜訊號,可幫助更精確且更有效率地探測到可能為磷酸胜肽的訊號。
Alkaline phosphatase(AP)has been wildly used for removing phosphate groups from phosphopeptides in dephosphorylation reaction, yielding a “mass shift” of 80n Da relative to the original mass of the phosphopeptides in MS spectra. The mass shift can be utilized for the localization of the potential
phosphopeptide signals. However, glycerol which is commonly contained in the AP reagent and additional reaction buffer which consists of various salts can interfere with LC-MS analysis. Therefore, we used a phosphopeptide T6 from beta-casein to evaluate an optimal amount range of AP and a suitable reaction buffer, and further to optimize dephosphorylated T6 signals in the
dephosphorylation reaction. The results of dephosphorylated T6 signals of the MALDI-TOF MS analysis showed the optimal conditions were used 10^-5 to 1
U of AP in 20 mM ammonium bicarbonate buffer per 1 pmol of T6; the results of the LC-ESI-Q-TOF MS analysis were used 10^-3 to 1 U of AP in the same reaction buffer per 2 pmol of T6. Based on these results, we observed the amount of AP using to dephosphorylate a particular amount of T6 in 20 mM ammonium buffer less than in 1X Dephosphorylation buffer. Besides, the intensity of dephosphorylated T6 signals in the MS spectra could be interfered with glycerol and decreased if 1 pmol of T6 is reacted with AP above 1 U. In conclusion, the study demonstrated the reaction condition for getting optimal dephosphorylated T6 signals in the dephosphorylation reaction, which is
contributive to the mining of potential phosphopeptide signals more accurate and efficient.
Annan RS, Huddleston MJ, Verma R, Deshaies RJ, Carr SA. A multidimensional electrospray MS-based approach to phosphopeptide mapping. Anal Chem 73(3):393-404. (2001)
Annan WD, Manson W, Nimmo JA. The identification of phosphoseryl residues during the determination amino acid sequence in phosphoproteins. Anal Biochem 121(1):62-8. (1982)
Beausoleil SA, Jedrychowski M, Schwartz D, Elias JE, Villén J, Li J et al. Large-scale characterization of HeLa cell nuclear phosphoproteins. Proc Natl Acad Sci USA 101(33):12130-35. (2004)
Bennett KL, Stensballe A, Podtelejnikov AV, Moniatte M, Jensen ON. Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole
time-of-flight tandem mass spectrometry. J Mass Spectrom 37(2):179-90. (2002)
Biemann K. Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom 16(1-12):99-111. (1988)
Bodnar WM, Blackburn RK, Krise JM, Moseley MA. Exploiting the complementary nature of LC/MALDI/MS/MS and LC/ESI/MS/ MS for increased proteome coverage. J Am Soc Mass Spectrom 14(9):971-9. (2003)
Bodenmiller B, Mueller LN, Mueller M, Domon B, Aebersold R. Reproducible isolation of distinct, overlapping segments of the phosphoproteome. Nat Methods 4(3):231-7.
(2007)
Chait BT and Kent SB. Weighing naked proteins: practical, high-accuracy mass measurement of peptides and proteins. Science 257(5078):1885-94. (1992)
Carr SA, Huddleston MJ, Annan RS. Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. Anal Biochem 239(2):180-92. (1996)
Cohen P. The regulation of protein function by multisite phosphorylation--a 25 year update. Trends Biochem Sci 25(12):596-601. (2000)
Collins MO, Yu L, Choudhary JS. Analysis of protein phosphorylation on a proteome-scale. Proteomics 7(16):2751-68. (2007)
Davis MT, Stahl DC, Hefta SA, Lee TD. A microscale electrospray interface for on-line, capillary liquid chromatography/tandem mass spectrometry of complex peptide
mixtures. Anal Chem 67(24):4549-56. (1995)
Ding J, Burkhart W, Kassel DB. Identification of phosphorylated peptides from complex mixtures using negative-ion orifice-potential stepping and capillary liquid chromatography/electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom 8(1):94-8. (1994)
Ducret A, Van Oostveen I, Eng JK, Yates JR 3rd, Aebersold R. High throughput protein characterization by automated reverse-phase chromatography/electrospray tandem mass spectrometry. Protein Sci 7(3):706-19. (1998)
Edwards E and Thomas-Oates J. Hyphenating liquid phase separation techniques with mass spectrometry: on-line or off-line. Analyst 130(1):13-7. (2005)
Feng S, Pan C, Jiang X, Xu S, Zhou H, Ye M et al. Fe3+ immobilized metal affinity chromatography with silica monolithic capillary column for phosphoproteome analysis. Proteomics 7(3):351-60. (2007)
Fenn JB, Mann M, Meng CK, Wong SF, Whitehouse CM. Electrospray ionization for mass spectrometry of large biomolecules. Science 246(4926):64-71. (1989)
Feuerstein I, Morandell S, Stecher G, Huck CW, Stasyk T, Huang HL et al. Phosphoproteomic analysis using immobilized metal ion affinity chromatography on the
basis of cellulose powder. Proteomics 5(1):46-54. (2005)
Fisher EH. Protein phosphorylation and cellular regulation II (Nobel lecture). Angew Chem Int Ed 32(8):1130-7. (1993)
Garcia BA, Shabanowitz J, Hunt DF. Analysis of protein phosphorylation by mass spectrometry. Methods 35(3):256-64. (2005)
Gruhler A, Olsen JV, Mohammed S, Mortensen P, Faergeman NJ, Mann M et al. Quantitative phosphoproteomics applied to the yeast pheromone signaling pathway. Mol Cell Proteomics 4(3):310-27. (2005)
Hart SR, Waterfield MD, Burlingame AL, Cramer R. Factors governing the solubilization of phosphopeptides retained on ferric NTA IMAC beads and their analysis by MALDI TOFMS. J Am Soc Mass Spectrom 13(9):1042-51. (2002)
Hillenkamp F. Karas M. Beavis RC. Chait BT. Matrix-assisted laser desorption/ionization mass spectrometry of biopolymers. Anal Chem 63(24):1193A-203A. (1991)
Hirschberg D, Jagerbrink T, Samskog J, Gustafsson M, Stahlberg M, Alvelius G et al. Detection of phosphorylated peptides in proteomic analyses using microfluidic compact disk technology. Anal Chem 76(19):5864-71. (2004)
Huddleston MJ, Annan RS, Bean MF, Carr SA. Selective detection of phosphopeptides in complex mixtures by electrospray liquid chromatography mass spectrometry. J Am
Soc Mass Spectrom 4(9):710-7. (1993)
Hung JJ, Wang YT, Chang WC. Sp1 deacetylation induced by phorbol ester recruits p300 to activate 12(S)-lipoxygenase gene transcription. Mol Cell Biol 26(5):1770-85. (2006)
Hunter AP and Games DE. Chromatographic and mass spectrometric methods for the identification of phosphorylation sites in phosphoproteins. Rapid Commun Mass
Spectrom 8(7):559-70. (1994)
Hunter T. Signaling--2000 and beyond. Cell 100(1):113-27. (2000)
Imanishi SY, Kochin V, Ferraris SE, Aurélie de Thonel, Pallari HM, Corthals GL et al. Reference-facilitated phosphoproteomics: fast and reliable phosphopeptide
validation by μLC-ESI-Q-TOF MS/MS. Mol Cell Proteomics 6(8):1380-91. (2007)
Jedrzejewski PT and Lehmann WD. Detection of modified peptides in enzymatic digests by capillary liquid chromatography/electrospray mass spectrometry and a programmable skimmer CID acquisition routine. Anal Chem 69(3):294-301. (1997)
Jin WH, Dai J, Zhou H, Xia QC, Zou HF, Zeng R. Phosphoproteome analysis of mouse liver using immobilized metal affinity purification and linear ion trap mass spectrometry. Rapid Commun Mass Spectrom 18(18):2169-76. (2004)
Karas M and Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10,000 daltons. Anal Chem 60(20):2299-301. (1988)
Kebarle P. A brief overview of the present status of the mechanisms involved in electrospray mass spectrometry. J Mass Spectrom 35(7):804-17. (2000)
Labdon JE, Nieves E, Schubart UK. Analysis of phosphoprotein p19 by liquid chromatography/mass spectrometry. Identification of two proline-directed serine
phosphorylation sites and a blocked amino terminus. J Biol Chem 267(5):3506-13. (1992)
Larsen MR, Thingholm TE, Jensen ON, Roepstorff P, Jørgensen TJ. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol Cell Proteomics 4(7):873-86. (2005)
Liao PC, Leykam J, Andrews PC, Gage DA, Allison J. An approach to locate phosphorylation sites in a phosphoprotein: mass mapping by combining specific enzymatic degradation with matrix-assisted laser desorption/ionization mass spectrometry. Anal Biochem 219(1):9-20. (1994)
Link AJ, Eng J, Schieltz DM, Carmack E, Mize GJ, Morris DR et al. Direct analysis of protein complexes using mass spectrometry. Nat Biotechnol 17(7):676-82. (1999)
Mann M, Ong SE, Grønborg M, Steen H, Jensen ON, Pandey A. Analysis of protein phosphorylation using mass spectrometry: deciphering the phosphoproteome. Trends Biotechnol 20(6):261-8. (2002)
McLachlin DT and Chait BT. Analysis of phosphorylated proteins and peptides by mass spectrometry. Curr Opin Chem Biol 5(5):591-602. (2001)
Meyer HE, Hoffmann-Posorske E, Korte H, Heilmeyer LM Jr. Sequence analysis of phosphoserine-containing peptides. Modification for picomolar sensitivity. FEBS Lett 204(1):61-6. (1986)
Oda Y, Nagasu T, Chait BT. Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome. Nat Biotechnol 19(4):379-82. (2001)
Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20
(18):3551-67. (1999)
Pinkse MW, Uitto PM, Hilhorst MJ, Ooms B, Heck AJ. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal Chem 76(14): 3935-43. (2004)
Rush J, Moritz A, Lee KA, Guo A, Goss VL, Spek EJ et al. Immunoaffinity profiling of tyrosine phosphorylation in cancer cells. Nat Biotechnol 23(1):94-101. (2005)
Schlosser A, Pipkorn R, Bossemeyer D, Lehmann WD. Analysis of protein phosphorylation by a combination of elastase digestion and neutral loss tandem mass spectrometry. Anal Chem 73(2):170-6. (2001)
Steen H, Küster B, Mann M. Quadrupole time-of-flight versus triple-quadrupole mass spectrometry for the determination of phosphopeptides by precursor ion scanning. J Mass Spectrom 36(7):782-90. (2001)
Stensballe A, Anderson S, Jensen ON. Characterization of phosphoproteins from electrophoretic gels by nanoscale Fe(III) affinity chromatography with off-line mass
spectrometry analysis. Proteomics 1(2):207-22. (2001)
Stevens SM Jr, Chung AY, Chow MC, McClung SH, Strachan CN, Harmon AC et al. Enhancement of phosphoprotein analysis using a fluorescent affinity tag and mass spectrometry. Rapid Commun Mass Spectrom 19(15):2157-62. (2005)
Torres MP, Thapar R, Marzluff WF, Borchers CH. Phosphatase-directed phosphorylationsite determination: a synthesis of methods for the detection and identification of phosphopeptides. J Proteome Res 4(5):1628-35. (2005)
Wilm M, Neubauer G, Mann M. Parent ion scans of unseparated peptide mixtures. Anal Chem 68(3):527-33. (1996)
Wu HY and Liao PC. Analysis of protein phosphorylation using mass spectrometry. Chang Gung Med J 31(3):217-27. (2008)
Wu HY, Tseng VS, Liao PC. Mining phosphopeptide signals in liquid chromatography mass spectrometry data for protein phosphorylation analysis. J Proteome Res 6(5):1812-21. (2007)
Yip TT and Hutchens TW. Mapping and sequence-specific identification of phosphopeptides in unfractionated protein digest mixtures by matrix-assisted laser desorption
/ionization time-of-flight mass spectrometry. FEBS Lett 308(2):149-53. (1992)
Zhang X, Herring CJ, Romano PR, Szczepanowska J, Brzeska H, Hinnebusch AG et al. Identification of phosphorylation sites in proteins separated by polyacrylamide gel
electrophoresis. Anal Chem 70(10):2050-9. (1998)
Zhen Y, Xu N, Richardson B, Becklin R, Savage JR, Blake K et al. Development of an LC-MALDI method for the analysis of protein complexes. J Am Soc Mass Spectrom 15(6):803-22. (2004)
Zhou W, Merrick BA, Khaledi MG, Tomer KB. Detection and sequencing of phosphoptides affinity bound to immobilized metal ion beads by matrix-assisted laser desorption/
ionization mass spectrometry. J. Am. Soc. Mass Spectrom 11(4):273-82.(2000)
Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol 19(4):375-8. (2001)
洪建中, 張文昌. Sp1的轉譯後修飾作用在基因調控扮演重要角色. 成大研發快訊文摘 第三卷第五期頁1. (2008)
校內:2107-12-23公開