簡易檢索 / 詳目顯示

研究生: 吳智善
Wu, Chih-Shan
論文名稱: 具有分散式布拉格反射鏡之單接面砷化鎵太陽能電池應用於聚光系統之研究
The Study of Concentrating Single Junction GaAs Solar Cells With Distributed Bragg Reflector
指導教授: 蘇炎坤
Su, Yan-Kuin
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 微電子工程研究所
Institute of Microelectronics
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 97
中文關鍵詞: 分散式布拉格反射鏡太陽能電池砷化鎵
外文關鍵詞: distributed Bragg reflector, solar cell, GaAs
相關次數: 點閱:124下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之主要目的在於利用模擬程式分析與設計分散式布拉格反射鏡之特性,並研究此反射鏡與單接面砷化鎵太陽能電池結合之特性,其太陽能電池藉由再次吸收分散式布拉格反射鏡所反射的光子,以提升輸出光電流及整體轉換效率。
    利用傳遞矩陣法所建立的模擬程式能夠精確設計並預測分散式布拉格反射鏡之反射頻譜,使實驗測試的時間能夠有效地縮短。此外,此模擬程式也能夠模擬整體太陽能電池的反射頻譜,幫助我們分析具有分散式布拉格反射鏡之太陽能電池之外部量子效率在長波長波段有波動的增加情形產生。
    利用有機金屬氣相沉積法製作砷化鎵太陽能電池,並於吸收層之後增加分散式布拉格反射鏡以反射尚未吸收的光,使太陽能電池再次吸收。藉由模擬及實驗調變不同反射頻譜,並利用高解析X 射線繞射儀與掃描式電子顯微鏡等量測設備分析磊晶層之成長速率,得到精確的磊晶層厚度。從實際量測可知,具有分散式布拉格反射鏡之砷化鎵太陽能電池可以有效地提升光電流從13.6 mA/cm2 到 15.0 mA/cm2。一般的分散式布拉格反射鏡的各層厚度約為70 nm,加上所選用的材料(砷化鎵及砷化鋁)具有較大的能帶差,因此光生載子在分散式布拉格反射鏡的再結合速率會增加,造成太陽能電池的漏電流增加,從10-7 A 增加到10-6 A,進而造成太陽能電池的效率無法有效提升。為了解決此問題,於是利用超晶格的結構來降低太陽能電池的漏電流。
    由於超晶格分散式布拉格反射鏡具有較小的各層厚度,加上超晶格的連續能帶能使得載子不易再結合,且其反射頻譜可以藉由調整超晶格的週期數來改變中心波長,又其反射鏡之反射率與一般的反射鏡相當。因此使用超晶格分散式布拉格反射鏡仍然能讓太陽能電池的光電流增加,但不會增加太陽能電池的漏電流,所以具有超晶格分散式布拉格反射鏡太陽能電池的效率得以提升,從10.2% 增加到 10.7%。
    最後,量測分散式布拉格反射鏡太陽能電池於聚光條件下,從實際量測可知,具有超晶格分散式布拉格反射鏡之砷化鎵太陽能電池可以較一般砷化鎵太陽能電池的提升光電流從614 mA/cm2 增加到 636 mA/cm2,增加了22 mA/cm2,在聚光倍率為43 的條件下。效率方面則從10.7%增加到11.3%,相對增加5.7%,在聚光倍率為7的條件下。這是因為藉由增強入射光強度,增加超晶格分散式布拉格反射鏡反射再吸收的光子量,使得太陽能電池之效率可以更為明顯的提升。

    The main purpose of this thesis is to investigate and design the properties of distributed Bragg reflector (DBR) structures by simulation programs and investigate the properties of single junction GaAs solar cells with DBR structures. And the enhancement of output photocurrent and conversion efficiency of solar cells are caused by the DBR structures’ reflection of photon to let solar cells absorb again.
    The simulation programs are successfully established by the transfer matrix methods. By this program, we can design and precisely predict the reflectance spectra of DBR and SL-DBR structures, resulting in saving time of experiment tests. Moreover, these programs can also simulate the whole structures of solar cells, helping us analysis the phenomenon of fluctuant increment of external quantum efficiency of solar cells in long wavelength region.
    The structures of GaAs solar cells on GaAs substrates were grown by MOVPE, and we insert DBR structures into the bottom of absorption layer to reflect the incident light in long wavelength region to recycle. By simulation and experiment, we modulated the different reflectance spectra, and derived the growth rates of epitaxial layers by high resolution X-ray diffraction and scanning electron microscope (SEM) to obtain the precise thickness of the epitaxial layers.
    From measurement results, the GaAs solar cells with DBR structures can enhance the photocurrent from 13.6 mA/cm2 to 15.0 mA/cm2. Because the thickness of each layer of typical DBR structures is about 70 nm and the chosen materials, GaAs and AlAs, have larger difference of bangap, the recombination rate of the carrier generated by absorbed photon would increase in the DBR structures. Leading to the leakage current of solar cells with DBR structures increase, from 10-7 A to 10-6 A; thus, the efficiency of solar cells with DBR structures couldn’t effectively increase. To solve this problem, we would use the superlattice-DBR (SL-DBR) structures too reduce the leakage current of solar cells.
    Due to the thinner thickness of each layer of SL-DBR structures and the miniband of superlattice, the recombination rate of carrier would decrease. In addition, the reflectance spectrum could be modulated by the number of period of superlattice and the reflectance of high reflectance region is approach to the value of DBR structures. Therefore, the photocurrent of the solar cells with SL-DBR structures would be enhanced and, at the same time, the leakage current of them would not increase, leading to increase the efficiency of solar cells with SL-DBR structure, from 10.2% to 10.7%.
    Finally, the performance of the solar cells without and with DBR structures under concentration condition will be discussed. From the measurement results, the photocurrent of solar cells with SL-DBR structures is enhanced from 614 mA/cm2 to 636 mA/cm2, increased by 22 mA/cm2, under 43-sun condition. As to the efficiency of the solar cells with SL-DBR structures, it is enhanced from 10.7% to 11.3%, relatively increasing by 5.7%, under 7-sun condition. These are because the enhancement of incident light increases the amount of light reflected from SL-DBR structures, leading the efficiency of the solar cells with SL-DBR structures would increase.

    Contents Abstract (in Chinese) I Abstract (in English) II Acknowledgement IV Contents V Table Captions VII Figure Captions VIII Chapter 1 Introduction 1 1.1 Background 1 1.2 Advantages and disadvantages of III-V solar cells 2 1.3 High-efficiency solar cells composed of GaAs-based materials 3 1.4 Motivation: photon recycling effect of GaAs-based solar cells 4 1.5 Organization of this thesis 5 Bibliography-Chapter 1 9 Chapter 2 MOVPE System and Device Measurement Systems 12 2.1 Metal-organic vapor phase epitaxy (MOVPE) system 12 2.2 High resolution X-ray diffraction (HRXRD) 16 2.3 UV-Vis spectrophotometer 18 2.4 Solar simulator and I-V measurement system 19 2.5 Solar response system 19 Bibliography-Chapter 2 25 Chapter 3 Theories and Simulation of Distributed Bragg Reflectors and Physics of Solar Cells 26 3.1 Theory of distributed Bragg reflectors 26 3.1.1 Principle of distributed Bragg reflectors 26 3.1.2 Superlattice/semiconductor distributed Bragg reflectors 27 3.2 Simulation of the distributed Bragg reflectors 28 3.2.1 Transfer matrix method 29 3.2.2 Simulation of the distributed Bragg reflectors 37 3.3 Introduction of solar cells and devices physics 38 3.3.1 Solar spectrum 38 3.3.2 Physics of solar cells 39 Bibliography-Chapter 3 47 Chapter 4 Analysis of GaAs Solar Cells with DBR Structures Grown by MOVPE 48 4.1 Materials selection of DBR structure 48 4.2 Design of DBR structures for GaAs solar cells 49 4.2.1 Experimental detail 50 4.2.2 Reflectance spectrums of DBR structures 51 4.3 GaAs solar cells with DBR structures 52 4.3.1 Experimental detail 52 4.3.2 Fabrication of solar cells 53 4.3.3 Device performance of GaAs solar cells with DBR structures 54 4.4 Summary 55 Bibliography-Chapter 4 70 Chapter 5 Analysis of GaAs Solar Cells with SL-DBR Structures Grown by MOVPE 71 5.1 Design of SL-DBR structures for GaAs solar cells 71 5.1.1 Experimental detail 72 5.1.2 Reflectance spectrums of SL-DBR structures 73 5.2 GaAs solar cells with SL-DBR structures 74 5.2.1 Experimental detail 74 5.2.2 Device performance of GaAs solar cells with SL-DBR structures 75 5.2.3 Influence of surface reflection of solar cells 77 5.3 Device performance of concentrating GaAs solar cells 78 5.4 Summary 79 Bibliography-Chapter 5 93 Chapter 6 Conclusion and Future Prospects 94 6.1 Conclusion 94 6.2 Future prospects 96 Bibliography-Chapter 6 97

    Chapter 1

    [1] A. E. Becquerel, “Recherches sur les effets de la radiation chimique de la lumière solaire, au moyen des courants électriques”, Compt. Rend. Acad. Sci., vol. 9, pp. 145-149, pp. 561-567, 1839.
    [2] W. G. Adams and R. E. Day, “The action of light on selenium”, Proc. Roy. Soc. A, vol. 25, pp. 113-117, 1876.
    [3] D. M. Chapin, C. S. Fuller and G. L. Pearson, “A new silicon p-n junction photocell for converting solar radiation into electrical power”, J. Appl. Phys., vol. 25, pp. 676-677, 1954.
    [4] D. C. Reynolds, G. Leies, L. L. Antes and R. E. Marburger, "Photovoltaic effect in cadmium sulfide", Phys. Rev., vol. 96, pp. 533-534, 1954.
    [5] R. Gremmelmaier, “Gallium-arsenic photoelement”, Z. Naturforsch. A, vol. 19, pp. 501-502, 1955.
    [6] D. A. Jenny, J. J. Loferski and P. Rappaport, “Photovoltaic effect in GaAs p-n junctions and solar energy conversion”, Phys. Rev., vol. 101, pp. 1208-1209, 1956.
    [7] Zh. I. Alferov, V. M. Andreev, M. B. Kagan, I. I. Protasov and V. G. Trofim, “Solar-energy converters based on p-n AlxGa1-xAs-GaAs heterojunctions”, Sov. Phys. Semicond., vol. 4, pp. 2047-2048, 1971.
    [8] J. M. Woodall and H. J. Hovel, “High-efficiency Ga1-xAlxAs-GaAs solar cells”, Appl. Phys. Lett., vol. 21, pp. 379-381, 1972.
    [9] Mary D. Archer and Robert Hill, “Clean Electricity from Photovoltaics (Series on Photoconversion of Solar Energy, Vol. 1)”, Imperial College Press, chap. 13, pp. 585-607, 2001.
    [10] C. Amano, H. Sugiura, A. Yamamoto and M. Yamaguchi, “20.2% efficiency Al0.4Ga0.6As/GaAs tandem solar cells grown by molecular beam epitaxy”, Appl. Phys. Lett., vol. 51, pp. 1998-2000, 1987.
    [11] K. Ramanathan, M. A. Contreras, C. L. Perkins, S. Asher, F. S. Hasoon, J. Keane, D. Young, M. Romero, W. Metzger, R. Noufi, J. Ward and A. Duda, “Properties of 19.2% efficiency ZnO/CdS/CuInGaSe2 thin-film solar cells”, Prog. Photovolt: Res. Appl., vol. 11, pp. 225-230, 2003.
    [12] X. Mathew, G. W. Thompson, V. P. Singh, J. C. McClure, S. Velumani, N. R. Mathews and P. J. Sebastian, “Development of CdTe thin films on flexible substrates—a review”, Sol. Energy Mater. Sol. Cells, vol. 76, pp. 293-303, 2003.
    [13] P. Vivo, J. Jukola, M. Ojala, V. Chukharev and H. Lemmetyinen, “Influence of Alq3/Au cathode on stability and efficiency of a layered organic solar cell in air”, Sol. Energy Mater. Sol. Cells, vol. 92, pp. 1416-1420, 2008.
    [14] B. O’Regan and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature, vol. 353, pp. 737-740, 1991.
    [15] L. Kazmerski, National Renewable Energy Laboratory (NREL), "Best Research-Cell Efficiencies", Rev. 04-2011, 2011.
    [16] S. Wojtczuk, P. Chiu, X. Zhang, D. Derkacs, C. Harris, D. Pulver and M. Timmons ,"InGaP/GaAs/InGaAs concentrators using Bi-facial epigrowth", 35th IEEE PVSC, Honolulu, HI, 2010.
    [17] E. D. Palik, "Handbook of Optical Constant of Solids", Orlando: Academic Press, 1985.
    [18] T. Takamoto, T. Agui, K. Kamimura, M. Kaneiwa, M. Imaizumi, S. Matsuda and M. Yamaguchi, “Multijunction solar cell technologies - high efficiency, radiation resistance, and concentrator applications”, in Proc. of 3rd World Conf. on Photovoltaic Energy Conversion, Osaka, Japan, vol. 1, pp. 581-586, 2003.
    [19] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [20] R.R. King, A. Boca, W. Hong, X.-Q. Liu, D. Bhusari, D. Larrabee, K.M. Edmondson, D.C. Law, C.M. Fetzer, S. Mesropian, N.H. Karam, "Band-gap-engineered architectures for high-efficiency multijunction concentrator solar cells", 24th EU PVSEC, Hamburg, Germany, pp.55-61, 2009.
    [21] W. Guter, J. Schöne, S. P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Welser, E. Oliva, A. W. Bett, and F. Dimroth, "Current-matched triple-junction solar cell reaching 41.1% conversion efficiency under concentrated sunlight", Appl. Phys. Lett., vol. 94, pp. 223504, 2009.
    [22] J. F. Geisz, Sarah Kurtz, M. W. Wanlass, J. S. Ward, A. Duda, D. J. Friedman, J. M. Olson, W. E. McMahon, T. E. Moriarty, and J. T. Kiehl, "High-efficiency GaInP/GaAs/InGaAs triple-junction solar cells grown inverted with a metamorphic bottom junction", Appl. Phys. Lett., vol. 91, pp. 023502, 2007.
    [23] S. B. Zhang and S.-H. Wei, “Nitrogen solubility and N-induced defect complexes in epitaxial GaAs: N”, Phys. Rev. Lett., vol. 86, pp. 1789-1792, 2001.
    [24] J. W. Leem, Y. T. Lee, J. S. Yu, “Optimum design of InGaP/GaAs dual-junction solar cells with different tunnel diodes”, Opt. Quant. Electron., vol. 41, pp.605-612, 2009.
    [25] J.J. Schermer, G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik and P.K. Larsen, "Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off", Thin Solid Films, vol. 511-512, pp. 645-653, 2006.
    [26] M. C. Tseng, R. H. Horng, Y. L. Tsai, D. S. Wuu, and H. H. Yu, "Fabrication and characterization of GaAs solar cells on copper substrates", IEEE Electron Dev. Lett., vol. 30, pp. 940-942, 2009.
    [27] K. H. Yang, J. Y. Yang, "The analysis of light trapping and internal quantum efficiency of a solar cell with DBR back reflector", Sol. Energy, vol. 83, pp. 2050-2058, 2009.
    [28] M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov and V.M. Andreev, "Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector", Sol. Energy Mater. Sol. Cells, vol. 68, pp. 105-122, 2001.

    Chapter 2

    [1] R. Beccard, “Epitaxy of III-Nitride Materials-MOVPE Allows the Deposition of Thinnest Layers on Large Areas”, NanoS-GUIDE, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (Germany), pp. 36-40, 2007.
    [2] Carl Asplund’s doctoral dissertation, “Epitaxy of GaAs-based long-wavelength vertical cavity lasers”, Royal Institute of Technology (KTH), Department of Microelectronics and Information Technology, Kista, Sweden, 2003.
    [3] Gerald B. Stringfellow, “Organometallic Vapor-Phase Epitaxy: Theory and Practice”, 2nd Edition, Academic Press, San Diego, 1999.
    [4] D. Schlenker, T. Miyamoto, Z. B. Chen, M. Kawaguchi, T. Kondo, E. Gouardes, F. Koyama and K. Iga, “Critical layer thickness of 1.2-μm highly strined GaInAs/GaAs quantum wells”, J. Cryst. Growth Vol. 221, pp. 503-508, 2000
    [5] G.-Y. Plaine, C. Asplund, P. Sundgren, S. Mogg and M. Hammar, “Low-temperature metal-organic vapor-phase epitaxy growth and performance of 1.3-µm GaInNAs/GaAs single quantum well lasers”, Jpn. J. Appl. Phys., vol. 41, part 1, no. 2B, pp. 1040-1042, Feb. 2002.
    [6] E. Bourret-Courchesne, Q. Ye, D. W. Peters, J. Arnold, M. Ahmed, S. J. C. Irvine, R. Kanjolia, L. M. Smith and S. A. Rushworth, “Pyrolysis of dimethylhydrazine and its co-pyrolysis with triethylgallium”, J. Cryst. Growth, vol. 217, no. 1-2, pp. 47-54, July 2000.
    [7] D. K. Bowen and B. K. Tanner, “High Resolution X-ray Diffractometry and Topography”, CRC Press, USA, Feb. 1998.
    [8] S. H. Wemple and J. A. Seman, “Optical transmission through multilayered structures”, Appl. Opt., vol. 12, no. 12, pp. 2947-2949, Dec. 1973.
    [9] J. F. Muth, J. H. Lee, I. K. Shmagin, R. M. Kolbas, H. C. Casey, B. P. Keller, U. K. Mishra and S. P. DenBaars, “Absorption coefficient, energy gap, exciton binding energy, and recombination lifetime of GaN obtained from transmission measurements”, Appl. Phys. Lett., vol. 71, no. 18, pp. 2572-2574, Nov. 1997.
    [10] H. Field, "UV-VIS-IR spectral responsivity measurement system for solar cells", National Center for Photovoltaics Program Review Meeting, Denver, Colorado, pp. 1-7, 1998.

    Chapter 3

    [1] S. ISHIDA, T. MIYAMOTO and F. KOYAMA, “Short-Period GaInAs/InP Superlattice for Distributed Bragg Reflector”, Jpn. J. Appl. Phys., vol. 45, pp. L723-L725, 2006.
    [2] Y. Suzuki, H. Iwamura, T. Miyazawa and O. Mikami, “A novel waveguided polarization mode splitter using refractive index changes induced by superlattice disordering”, IEEE J. Quantum Electron., vol. 30, pp. 1794-1800, 1994.
    [3] T. Borca-Tasciuc, D. W. Song, J. R. Meyer, I. Vurgafitman, M. J. Yang, B. Z. Nosho, L. J. Whitman, H. Lee, R. U. Martinelli, G. W. Turner, M. J. Manfra and G. Chen, “Thermal conductivity of AlAs0.07Sb0.93 and Al0.9Ga0.1As0.07Sb0.93 alloys and (AlAs)1/(AlSb)11 digital-alloy superlattices”, J. Appl. Phys., vol. 92, pp. 4994-4998, 2002.
    [4] S. Mizuno and S. Tamura, “Multiple-barrier systems for phonons: Transmission characteristics”, Jpn. J. Appl. Phys., vol. 32, pp. 2206-2209, 1993.
    [5] P. Postigo, D. Golmayo, H. Go´mez, D. Rodrı´guez1 and M. Dotor, “Improvement of the temperature characteristic of 1.3 µm gainasp laser diodes with gainasp/inp short-period superlattice barriers”, Jpn. J. Appl. Phys., vol. 41, pp. L565-L567, 2002.
    [6] Y. K. Su, J. C. Zhong, and S. J. Chang, “A Novel vertical-cavity surface-emitting laser with semiconductor/superlattice distributed Bragg reflectors”, IEEE Photon. Tech. Lett., vol. 14, pp. 1388-1390, 2002.
    [7] G. B. Airy, “On the phænomena of Newton's rings when formed between two transparent substances of different refractive powers”, Philosophical Magazine Series 3, vol. 2, pp.20, 1833.
    [8] P. Yeh, “Optical Waves in layered Media”, John Wiley & Sons, Chapter 5, pp. 102-117, 1991.
    [9] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications”, J. Appl. Phys., vol. 58, pp. R1-R29, 1985.
    [10] American Society for Testing and Materials (ASTM), “ASTM G173-03 Standard Tables for Reference Solar Spectral Irradiances”, 1992.
    [11] S. M. Sze and Kwok K. Ng, “Physics of Semiconductor Devices”, 3rd Edition, John Wiley & Sons, Inc. Publication, USA, Chap. 13, pp. 719-736, 2007.
    [12] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.

    Chapter 4

    [1] M. C. Tseng, R. H. Horng, Y. L. Tsai, D. S. Wuu, and H. H. Yu, “Fabrication and characterization of GaAs solar cells on copper substrates”, IEEE Electron Dev. Lett., vol. 30, pp. 940-942, 2009.
    [2] L. Zeng, Y. Yi, C. Y. Hong, B. A. Alamariu, J. Liu, X. Duan and L. C. Kimerling, “New solar cells with novel light trapping via textured photonic crystal back reflector”, Mater. Res. Soc. Symp. Proc., vol. 891, pp. 0891-EE06-06.1-6, 2010.
    [3] Sze, S.M., “Physics of Semiconductor Device”, New York, Wiley Interscience Publication, pp. 848-849, 1981.
    [4] A. Sakuma, “Stability of half-metallic ferromagnetism of zinc-blende type CrAs and MnM (M = Si, Ge and Sn)”, J. Phys. Soc. Jpn., vol. 71, pp. 2534-2538, 2002.
    [5] M. Leszczynski, M. Micovic, C. A. C. Mendonca, A. Ciepielewska and P. Ciepielewski, “Lattice constant of AlAs”, Cryst. Res. Technol., vol. 27, pp. 97-100, 1992.
    [6] J. F. Chen, C. T. Ke, P. C. Hsieh, C. H. Chiang, W. I. Lee, and S. C. Lee, “Deep-level emissions in GaAsN/GaAs structures grown by metal organic chemical vapor deposition”, J. Appl. Phys., vol. 101, pp. 123515-1-4, 2007.
    [7] J. Toivonen, T. Tuomi, J. Riikonen, L. Knuuttila, T. Hakkarainen, M. Sopanen, H. Lipsanen, P. J. McNally, W. Chen and D. Lowney, “Mifit dislocations in GaAsN/GaAs interface”, J. Mater. Sci. - Mater. Electron., vol. 14, pp. 267-270, 2003.
    [8] S. Adachi, “GaAs, AlAs, and AlxGa1-xAs: Material parameters for use in research and device applications”, J. Appl. Phys., vol. 58, pp. R1-R29, 1985.
    [9] E. Hecht, “Optics”, 2nd ed., pp. 100, Addison Wesley, 1987.
    [10] P. Yeh, “Optical Waves in Layered Media”, John Wiley & Sons, Chapter 5, pp. 102-117, 1991.
    [11] J.J. Schermer, G.J. Bauhuis, P. Mulder, E.J. Haverkamp, J. van Deelen, A.T.J. van Niftrik and P.K. Larsen, “Photon confinement in high-efficiency, thin-film III–V solar cells obtained by epitaxial lift-off”, Thin Solid Films, vol. 511-512, pp. 645-653, 2006.
    [12] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.
    [13] M. Mizutani, F. Teramae, O. Kobayashi, S. Naritsuka, and T. Maruyama, “Precise control of growth of DBR by MBE using in-situ reflectance monitoring system”, phys. stat. sol. (c), vol. 3, pp. 659–662, 2006.

    Chapter 5

    [1] S. M. Ramey and R. Khoie, “Modeling of multiple-quantum-well solar cells including capture, escape, and recombination of photoexcited carriers in quantum wells”, IEEE Trans. Electr. Dev., vol. 50, pp. 1179-1188, 2003.
    [2] D.B. Bushnell, N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, G. Hill, R. Airey and M. Mazzer “Short-circuit current enhancement in Bragg stack multi-quantum-well solar cells for multi-junction space cell applications”, Sol. Energy Mater. Sol. Cells, vol. 75, pp. 299-305, 2003.
    [3] Y. K. Su, J. C. Zhong, and S. J. Chang, “A novel vertical-cavity surface-emitting laser with semiconductor/superlattice distributed Bragg reflectors”, IEEE Photon. Tech. Lett., vol. 14, pp. 1388-1390, 2002.
    [4] D. A. Ahmari, M. T. Fresina, Q. J. Hartmann, P. W. Barlage, M. Feng and G. E. Stillman, “InGaP/GaAs heterojunction bipolar transistor grown on a semi-insulating InGaP buffer layer”, IEEE Electron Dev. Lett., vol. 18, pp. 559-561, 1997.
    [5] W. S. Lour, J. H. Tsai, L. W. Laih, W. C. Liu, “Influence of channel doping-profile on camel-gate field-effect transistor”, IEEE Trans. Electr. Dev., vol. 43, pp. 871-876, 1996.
    [6] M. Bosi and C. Pelosi, “The potential of III-V semiconductors as terrestrial photovoltaic devices”, Prog. Photovolt: Res., vol. 15, pp. 51-68, 2007.
    [7] M.Z. Shvarts, O.I. Chosta, I.V. Kochnev, V.M. Lantratov and V.M. Andreev, “Radiation resistant AlGaAs/GaAs concentrator solar cells with internal Bragg reflector”, Sol. Energy Mater. Sol. Cells, vol. 68, pp. 105-122, 2001.
    [8] D.C. Johnson, I. Ballard, K.W.J. Barnham, D.B. Bishnell, J.P. Connolly, M.C. Lynch, T.N.D. Tibbits, N.J. Ekins-Daukes, M. Mazzer, R. Airey, G. Hill and J.S. Roberts, “Advances in Bragg stack quantum well solar cells”, Sol. Energy Mater. Sol. Cells, vol. 75, pp. 299-305, 2005.
    [9] D. Buie, M. J. McCann, K. J. Weber and C. J. Dey, “Full day simulations of anti-reflection coatings for flat plate silicon photovoltaics”, Sol. Energy Mater. Sol. Cells, vol. 81, pp. 13-24, 2004.
    [10] J. Nelson, “The Physics of Solar Cells”, Imperial College Press, UK, 2003.
    [11] A. L. Luque, V. M. Andreev, “Concentrator Photovoltaics”, Springer Berlin Heidelberg, New York, 2007.

    Chapter 6

    [1] D. J. Friedman, J. F. Geisz, S. R. Kurtz and J. M. Olson, “1-eV solar cells with GaInNAs active layer”, J. Cryst. Growth, vol. 195, pp. 409-415, 1998.
    [2] S. B. Zhang and S.-H. Wei, “Nitrogen solubility and N-induced defect complexes in epitaxial GaAs: N”, Phys. Rev. Lett., vol. 86, pp. 1789-1792, 2001.
    [3] D.B. Bushnell, N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, G. Hill, R. Airey and M. Mazzer, “Short-circuit current enhancement in Bragg stack multi-quantum-well solar cells for multi-junction space cell applications”, Sol. Energy Mater. Sol. Cells, vol. 75, pp. 299-305, 2003.
    [4] D.C. Johnson, I. Ballard, K.W.J. Barnham, D.B. Bishnell, J.P. Connolly, M.C. Lynch, T.N.D. Tibbits, N.J. Ekins-Daukes, M. Mazzer, R. Airey, G. Hill and J.S. Roberts, “Advances in Bragg stack quantum well solar cells”, Sol. Energy Mater. Sol. Cells, vol. 75, pp. 299-305, 2005.

    下載圖示 校內:2014-07-28公開
    校外:2016-07-28公開
    QR CODE