| 研究生: |
程巧馨 Cheng, Chiao-Hsin |
|---|---|
| 論文名稱: |
都市型態對建築能源消耗與光電潛力的影響之初探-以臺北市為例 Exploring the Impact of Urban Form on Building Energy Consumption and Solar Photovoltaic Potential -A Case Study of Taipei City |
| 指導教授: |
張學聖
Chang, Hsueh-Sheng |
| 學位類別: |
碩士 Master |
| 系所名稱: |
規劃與設計學院 - 都市計劃學系 Department of Urban Planning |
| 論文出版年: | 2024 |
| 畢業學年度: | 112 |
| 語文別: | 中文 |
| 論文頁數: | 86 |
| 中文關鍵詞: | 都市型態 、建築能源消耗 、光電潛力 、迴歸分析 |
| 外文關鍵詞: | urban form, building energy consumption, photovoltaic potential, regression analysis |
| 相關次數: | 點閱:59 下載:1 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
都市地區集中全球超過半數人口,每年消耗超過70%的能源,隨著人口不斷增加,都市對能源的需求逐漸上升。由於建築部門為都市能源消耗的主要來源之一,其減碳策略對實現全球氣候目標極其重要;然而,受限於技術層面發展困境,暫時無法以建材管理的方式大幅減少建築部門的碳排放量,因此有許多國家達成共識,將節能技術和再生能源利用技術作為永續建築的最終量化指標,以減少城市能源消耗或增加再生能源的使用。
除地面型太陽光電的建置外,也應對屋頂型太陽光電予以考量,因為建成區都市化程度高,適當提高都市的能源自給率,有助於紓解地面型光電的建置壓力。近年有關城市能源的研究大多集中在城市太陽能潛力或城市能源消耗的獨立研究,或是以單一建築進行能源自主的考量。有越來越多的研究表明,都市型態會透過緊湊程度、幾何特徵等因素對建築能耗與太陽光電潛力產生影響。文獻指出建築覆蓋率、街道型態、綠地覆蓋率和建築群朝向等不同的都市型態因素會改變區域內的微氣候條件、太陽輻射量、城市熱島效應;進而影響建築內部能源使用和外部可接收的輻射量,增加光電發電量可能也會導致能源消耗的增加,因此需要釐清減少建築能源消耗及增加太陽光電潛力的權衡關係。
本研究結合能源消耗與光電潛力面向,嘗試探討不同都市型態下減少能源使用與提升太陽能發電量的權衡。本文除前言外分為四個部分,首先回顧相關文獻,探討都市型態如何影響能源消耗與光電潛力;再據以進行研究設計,包含都市型態因子計算、能源績效分析與迴歸分析。本文以臺北市做為實證研究範圍,探討建成區內不同都市型態因素與光電替代率的關係,並透過相關分析,進一步比較都市型態指標對能源績效的影響;最後研究結果發現,以整體而言,都市型態指標對於建築能耗和光電潛力的相關性皆為同向關係,表示減少能源消耗和提升光電使用具有權衡關係;透過迴歸分析可以看到,空間單元內的建築平均高度對光電替代率的影響最大;由於分群對應到能源績效指標的關係相異,應進一步針對不同類型的都市型態對應至不同的建築部門減排策略,以促進城市朝淨零路徑發展。
This study integrates aspects of energy consumption and photovoltaic potential, aiming to explore the trade-offs between reducing energy use and enhancing solar power generation in various urban typologies. The paper is structured into four main sections, excluding the introduction. First, a literature review is conducted to investigate how urban typology affects energy consumption and photovoltaic potential. Based on this review, the research design is developed, encompassing the calculation of urban typology factors, energy performance analysis, and regression analysis. The empirical scope of this study is the Taipei metropolitan area, where the relationship between various urban typology factors and the photovoltaic substitution rate is examined. Through correlation analysis, the influence of urban typology indicators on energy performance is further compared.
The findings reveal that, overall, urban typology indicators are positively correlated with both building energy consumption and photovoltaic potential, indicating a trade-off relationship between reducing energy consumption and increasing photovoltaic use. Regression analysis demonstrates that the average building height within spatial units has the most significant impact on the photovoltaic substitution rate. Due to the varying relationships between clusters and energy performance indicators, different urban typologies should correspond to distinct emission reduction strategies in the building sector to promote the development of cities towards a net-zero pathway.
Abar, S. N., Schulwitz, M., Faulstich, M., Caggiano, A., & Lee, S. J. (2023). The Impact of Urban Form and Density on Residential Energy Use: A Systematic Review. Sustainability, 15(22), Article 15685. https://doi.org/10.3390/su152215685
Ahmadian, E., Sodagar, B., Bingham, C., Elnokaly, A., & Mills, G. (2021). Effect of urban built form and density on building energy performance in temperate climates. Energy and Buildings, 236, Article 110762. https://doi.org/10.1016/j.enbuild.2021.110762
Amado, M., Poggi, F., Amado, A. R., & Breu, S. (2017). A Cellular Approach to Net-Zero Energy Cities. Energies, 10(11), Article 1826. https://doi.org/10.3390/en10111826
Boccalatte, A., Thebault, M., Ménézo, C., Ramousse, J., & Fossa, M. (2022). Evaluating the impact of urban morphology on rooftop solar radiation: A new city-scale approach based on Geneva GIS data. Energy and Buildings, 260, Article 111919. https://doi.org/10.1016/j.enbuild.2022.111919
Collaço, F. M. D., Simoes, S. G., Dias, L. P., Duic, N., Seixas, J., & Bermann, C. (2019). The dawn of urban energy planning - Synergies between energy and urban planning for Sao Paulo (Brazil) megacity. Journal of Cleaner Production, 215, 458-479. https://doi.org/10.1016/j.jclepro.2019.01.013
Dar-Mousa, R. N., & Makhamreh, Z. (2019). Analysis of the pattern of energy consumptions and its impact on urban environmental sustainability in Jordan: Amman City as a case study. Energy Sustainability and Society, 9, Article 15. https://doi.org/10.1186/s13705-019-0197-0
De Luca, G., Fabozzi, S., Massarotti, N., & Vanoli, L. (2018). A renewable energy system for a nearly zero greenhouse city: Case study of a small city in southern Italy. Energy, 143, 347-362. https://doi.org/10.1016/j.energy.2017.07.004
de Santoli, L., Mancini, F., & Garcia, D. A. (2019). A GIS-based model to assess electric energy consumptions and usable renewable energy potential in Lazio region at municipality scale. Sustainable Cities and Society, 46, Article 101413. https://doi.org/10.1016/j.scs.2018.12.041
Ewing, R., & Rong, F. (2008). The impact of urban form on U.S. residential energy use. Housing Policy Debate, 19(1), 1-30. https://doi.org/10.1080/10511482.2008.9521624
Gallardo-Saavedra, S., & Karlsson, B. (2018). Simulation, validation and analysis of shading effects on a PV system. Solar Energy, 170, 828-839. https://doi.org/10.1016/j.solener.2018.06.035
Gobakis, K., & Kolokotsa, D. (2017). Coupling building energy simulation software with microclimatic simulation for the evaluation of the impact of urban outdoor conditions on the energy consumption and indoor environmental quality. Energy and Buildings, 157, 101-115. https://doi.org/10.1016/j.enbuild.2017.02.020
Guang, Y. H., & Huang, Y. B. (2022). Urban Form and Household Energy Consumption: Evidence from China Panel Data. Land, 11(8), Article 1300. https://doi.org/10.3390/land11081300
Holden, E., & Norland, I. T. (2005). Three challenges for the compact city as a sustainable urban form: Household consumption of energy and transport in eight residential areas in the greater Oslo region. Urban Studies, 42(12), 2145-2166. https://doi.org/10.1080/00420980500332064
Ibrahim, Y., Kershaw, T., Shepherd, P., & Coley, D. (2021). On the Optimisation of Urban form Design, Energy Consumption and Outdoor Thermal Comfort Using a Parametric Workflow in a Hot Arid Zone. Energies, 14(13), 4026. https://www.mdpi.com/1996-1073/14/13/4026
Koo, C., Hong, T., Park, H. S., & Yun, G. (2014). Framework for the analysis of the potential of the rooftop photovoltaic system to achieve the net-zero energy solar buildings. Progress in Photovoltaics, 22(4), 462-478. https://doi.org/10.1002/pip.2448
Lan, H. F., Gou, Z. H., & Hou, C. Y. (2022). Understanding the relationship between urban morphology and solar potential in mixed-use neighborhoods using machine learning algorithms. Sustainable Cities and Society, 87, Article 104225. https://doi.org/10.1016/j.scs.2022.104225
Lee, K. S., Lee, J. W., & Lee, J. S. (2016). Feasibility study on the relation between housing density and solar accessibility and potential uses. Renewable Energy, 85, 749-758. https://doi.org/10.1016/j.renene.2015.06.070
Li, C. S., Song, Y., & Kaza, N. (2018). Urban form and household electricity consumption: A multilevel study. Energy and Buildings, 158, 181-193. https://doi.org/10.1016/j.enbuild.2017.10.007
Liu, K., Xu, X. D., Huang, W. X., Zhang, R., Kong, L. Y., & Wang, X. (2023). A multi-objective optimization framework for designing urban block forms considering daylight, energy consumption, and photovoltaic energy potential. Building and Environment, 242, Article 110585. https://doi.org/10.1016/j.buildenv.2023.110585
Luo, C., Gong, Y. L., Ma, W. B., & Zhao, J. (2019). BUILDING ENERGY EFFICIENCY IN GUANGDONG PROVINCE, CHINA. Thermal Science, 23(5), 3251-3262. https://doi.org/10.2298/tsci170909105l
Mangan, S. D., Oral, G. K., Kocagil, I. E., & Sozen, I. (2021). The impact of urban form on building energy and cost efficiency in temperate-humid zones. Journal of Building Engineering, 33, Article 101626. https://doi.org/10.1016/j.jobe.2020.101626
Mohajeri, N., Upadhyay, G., Gudmundsson, A., Assouline, D., Kämpf, J., & Scartezzini, J. L. (2016). Effects of urban compactness on solar energy potential. Renewable Energy, 93, 469-482. https://doi.org/10.1016/j.renene.2016.02.053
Muzayanah, I. F. U., Lean, H. H., Hartono, D., Indraswari, K. D., & Partama, R. (2022). Population density and energy consumption: A study in Indonesian provinces. Heliyon, 8(9), Article e10634. https://doi.org/10.1016/j.heliyon.2022.e10634
Natanian, J., & Auer, T. (2018). Balancing urban density, energy performance and environmental quality in the Mediterranean: A typological evaluation based on photovoltaic potential. Energy Procedia, 152, 1103-1108. https://doi.org/10.1016/j.egypro.2018.09.133
Oh, M., & Kim, Y. (2019). Identifying urban geometric types as energy performance patterns. Energy for Sustainable Development, 48, 115-129. https://doi.org/10.1016/j.esd.2018.12.002
Quan, S. J., Economou, A., Grasl, T., & Yang, P. P. J. (2020). An exploration of the relationship between density and building energy performance. Urban Design International, 25(1), 92-112. https://doi.org/10.1057/s41289-020-00109-7
Quan, S. J., & Li, C. S. (2021). Urban form and building energy use: A systematic review of measures, mechanisms, and methodologies. Renewable & Sustainable Energy Reviews, 139, Article 110662. https://doi.org/10.1016/j.rser.2020.110662
Quan, S. J., Wu, J., Wang, Y., Shi, Z., Yang, T., & Yang, P. P. (2016). Urban Form and Building Energy Performance in Shanghai Neighborhoods. Energy Procedia, 88, 126-132. https://doi.org/https://doi.org/10.1016/j.egypro.2016.06.035.
Rodríguez, L. R., Nouvel, R., Duminil, E., & Eicker, U. (2017). Setting intelligent city tiling strategies for urban shading simulations. Solar Energy, 157, 880-894. https://doi.org/10.1016/j.solener.2017.09.017
Shunfa, H., Hui, E. C. M., & Yaoyu, L. (2022). Relationship between urban spatial structure and carbon emissions: A literature review. Ecological Indicators, 144, Article 109456. https://doi.org/10.1016/j.ecolind.2022.109456
Tian, J., & Xu, S. (2021). A morphology-based evaluation on block-scale solar potential for residential area in central China. Solar Energy, 221, 332-347. https://doi.org/10.1016/j.solener.2021.02.049
Wang, P. C., Liu, Z. B., & Zhang, L. (2021). Sustainability of compact cities: A review of Inter-Building Effect on building energy and solar energy use. Sustainable Cities and Society, 72, Article 103035. https://doi.org/10.1016/j.scs.2021.103035
Wei, Z., Xu, W., Wang, D., Li, L. T., Niu, L. M., Wang, W., Wang, B. L., & Song, Y. H. (2018). A study of city-level building energy efficiency benchmarking system for China. Energy and Buildings, 179, 1-14. https://doi.org/10.1016/j.enbuild.2018.08.038
Wu, H. L., Deng, F., & Tan, H. W. (2022). Research on parametric design method of solar photovoltaic utilization potential of nearly zero-energy high-rise residential building based on genetic algorithm. Journal of Cleaner Production, 368, Article 133169. https://doi.org/10.1016/j.jclepro.2022.133169
Wu, J., Zhang, L., Liu, Z. B., Luo, Y. Q., Wu, Z. H., & Wang, P. C. (2020). Experimental and theoretical study on the performance of semi-transparent photovoltaic glazing facade under shaded conditions. Energy, 207, Article 118314. https://doi.org/10.1016/j.energy.2020.118314
Xu, S., Sang, M. C., Xie, M. J., Xiong, F., Mendis, T., & Xiang, X. W. (2023). Influence of urban morphological factors on building energy consumption combined with photovoltaic potential: A case study of residential blocks in central China. Building Simulation, 16(9), 1777-1792. https://doi.org/10.1007/s12273-023-1014-4
Ye, H. P., Li, Y., Shi, D. H., Meng, D., Zhang, N. H., & Zhao, H. R. (2023). Evaluating the potential of achieving carbon neutrality at the neighborhood scale in urban areas. Sustainable Cities and Society, 97, Article 104764. https://doi.org/10.1016/j.scs.2023.104764
吳思寰. (2021). 不同都市型態對冠層熱島之影響狀況探討 國立臺北科技大學]. 臺灣博碩士論文知識加值系統. 台北市. https://hdl.handle.net/11296/wc6c6a
卓宥瑄. (2012). 探討都市型態與能源消耗二氧化碳排放量的關聯性 國立臺北大學]. 臺灣博碩士論文知識加值系統. 新北市. https://hdl.handle.net/11296/km8z4e
胡崴智. (2013). 都市空間型態對家戶用電能源消耗之影響-以台北都會區為例 國立臺北大學]. 臺灣博碩士論文知識加值系統. 新北市. https://hdl.handle.net/11296/837a2h
楊銘;廖惠珠;李怡慧;孫育伯. (2022). 氣候與環境因子對屋頂型太陽光電發電量之影響. 臺灣能源期刊, 9(3), 263-280.
台灣電力公司-111年各縣市太陽光電容量因數。