簡易檢索 / 詳目顯示

研究生: 譚永鈺
Tan, Yung-Yu
論文名稱: 探討異染色質在血球細胞對抗綠膿桿菌之角色
Heterochromatin formation in hemocytes promotes antimicrobial responses against Pseudomonas aeruginosa PA14 in Drosophila
指導教授: 顏賢章
Yan, Shian-Jang
學位類別: 碩士
Master
系所名稱: 醫學院 - 生理學研究所
Department of Physiology
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 52
中文關鍵詞: 先天免疫異染色質蛋白1巨噬細胞果蠅綠膿桿菌
外文關鍵詞: Innate immunity, Heterochromatin protein 1 (HP1), Macrophage, Drosophila, Pseudomonas aeruginosa PA14
相關次數: 點閱:230下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在多細胞生物中,先天性免疫是宿主抵禦病原體的第一道防線。表觀遺傳學在調控先天免疫中扮演重要的角色。我們未發表的實驗結果顯示異染色質形成會活化先天免疫進而增加果蠅抵抗綠膿桿菌 PA14的感染。然而異染色質在血球細胞中如何調控吞噬作用及先天免疫反應進而抵抗PA14感染的分子機制尚未清楚。藉由研究相似於哺乳類巨噬細胞的果蠅血球細胞,我們探討血球細胞的異染色質如何調控PA14感染所引發的先天性免疫反應。首先我們發現血球細胞對於果蠅抵抗綠膿桿菌 PA14的感染扮演必要的角色。血球細胞藉由吞噬作用及活化脂肪細胞釋放抗微生物肽,以清除PA14進而增加宿主的存活率。重要的是,異染色質的形成參與血球細胞表觀基因組的重新編程進而促進PA14抗菌反應。血球細胞的異染色質藉由跨組織的方式促進脂肪細胞的免疫反應,並且會在PA14的感染初期時促進Dorsal蛋白質進入細胞核內。令人驚訝的是,血球細胞的異染色質增加會降低造血中心的血球細胞數量。綜上所述,這些結果指出一種新的調控先天免疫之表觀遺傳機制,此中異染色質的形成促進巨噬細胞介導的先天免疫反應,並為傳染性疾病的預防和治療方式提供更進一步的發展。

    In multicellular organisms, the innate immune system is the first line of defense against pathogen infection. Epigenetics plays an important role in regulating innate immunity. Our unpublished study has found that heterochromatin formation activates innate immune pathways against the human pathogen Pseudomonas aeruginosa PA14 in Drosophila. However, molecular mechanisms by which heterochromation formation regulates phagocytosis and innate immune responses mediated by macrophages against PA14 remain elusive. Here by studying heterochromatin-mediated innate immunity by hemocytes, analogous to mammalian macrophages, against PA14 infection in Drosophila, we first found that hemocytes are essential for survival of Drosophila against P. aeruginosa PA14 infection. Moreover, hemocytes facilitate PA14 clearance through phagocytosis and activating release of AMPs. Importantly, heterochromatin formation participates in reprogramming of hemocyte epigenomes upon PA14 infection to promote antibacterial defense. Hemocyte-specific heterochromatin formation activates cross-tissue immune responses in fat body cells, and promotes Dorsal nuclear translocation upon early PA14 infection. Surprisingly, we found that increased heterochromatin formation in hemocytes decreases hemocyte number in the hematopoietic hubs. Altogether, these results reveal a novel epigenetic mechanism by which heterochromatin formation promotes macrophage-mediated innate immune responses and provide deeper insights into prevention and therapeutics against infectious diseases.

    Abstract I 中文摘要 II Acknowledgement III Index IV Figure index VI 1. Introduction 1 1-1 The innate immune system plays an important role in fighting off pathogens 1 1-2 TLRs, a class of PRRs, are required for initiation of innate immunity 2 1-3 Emerging perspectives on epigenetic regulation of the innate immunity 4 1-4 Modeling of innate immune activation in Drosophila 7 1-5 The purpose of this research 10 2. Materials and methods 11 2-1 Drosophila strains: 11 2-2 Bacterial stocks and infection: 11 2-3 Whole-mount immunofluorescence staining: 12 2-4 Survival analysis: 12 2-5 Quantitative real-time PCR analysis: 12 2-6 Statistical analysis: 13 3. Results 14 3-1 Hemocytes play an important role for survival of Drosophila against P. aeruginosa PA14 infection 14 3-2 Hemocytes facilitate PA14 clearance through phagocytosis and activating release of AMPs 14 3-3 Heterochromatin formation participates in reprogramming of hemocyte epigenomes upon PA14 infection to promote antibacterial defense in Drosophila 16 3-4 Hemocyte-specific heterochromatin formation activates cross-tissue immune responses against PA14 infection 17 3-5 Heterochromatin formation in hemocytes promotes Dorsal nuclear translocation in early PA14 infection 18 3-6 Increased heterochromatin formation in hemocytes decreases hemocyte number 19 4. Discussion 21 4-1 Summary of this research 21 4-2 HP1 regulates heterochromatin levels and participates in innate immunity 22 4-3 Pseudomonas aeruginosa as the source of infection to explore the host defenses 23 4-4 Significance of this study 24 4-5 The limitations and advantages of the Drosophila in innate immune model 24 5. References 26 6. Figures 31 7. Supplemental information 51 8. Tables 52

    Aderem, A. (2003). Phagocytosis and the Inflammatory Response. The Journal of Infectious Diseases, 187(Supplement_2), S340-345. doi:10.1086/374747
    Aggarwal, K., & Silverman, N. (2008). Positive and negative regulation of the Drosophila immune response. BMB Rep, 41(4), 267-277. doi:10.5483/bmbrep.2008.41.4.267
    Akira, S., Takeda, K., & Kaisho, T. (2001). Toll-like receptors: critical proteins linking innate and acquired immunity. Nat Immunol, 2(8), 675-680. doi:10.1038/90609
    Allis, C. D., & Jenuwein, T. (2016). The molecular hallmarks of epigenetic control. Nat Rev Genet, 17(8), 487-500. doi:10.1038/nrg.2016.59
    Apidianakis, Y., Mindrinos, M. N., Xiao, W., Lau, G. W., Baldini, R. L., Davis, R. W., & Rahme, L. G. (2005). Profiling early infection responses: Pseudomonas aeruginosa eludes host defenses by suppressing antimicrobial peptide gene expression. Proc Natl Acad Sci U S A, 102(7), 2573-2578. doi:10.1073/pnas.0409588102
    Apidianakis, Y., & Rahme, L. G. (2011). Drosophila melanogaster as a model for human intestinal infection and pathology. Dis Model Mech, 4(1), 21-30. doi:10.1242/dmm.003970
    Basset, A., Khush, R. S., Braun, A., Gardan, L., Boccard, F., Hoffmann, J. A., & Lemaitre, B. (2000). The phytopathogenic bacteria Erwinia carotovora infects Drosophila and activates an immune response. Proc Natl Acad Sci U S A, 97(7), 3376-3381. doi:10.1073/pnas.070357597
    Basset, A., Tzou, P., Lemaitre, B., & Boccard, F. (2003). A single gene that promotes interaction of a phytopathogenic bacterium with its insect vector, Drosophila melanogaster. EMBO Rep, 4(2), 205-209. doi:10.1038/sj.embor.embor730
    Bird, A. (2007). Perceptions of epigenetics. Nature, 447(7143), 396-398. doi:10.1038/nature05913
    Boman, H. G. (1991). Antibacterial peptides: key components needed in immunity. Cell, 65(2), 205-207. doi:10.1016/0092-8674(91)90154-q
    Boman, H. G., Nilsson, I., & Rasmuson, B. (1972). Inducible antibacterial defence system in Drosophila. Nature, 237(5352), 232-235. doi:10.1038/237232a0
    Brownlie, R., & Allan, B. (2011). Avian toll-like receptors. Cell Tissue Res, 343(1), 121-130. doi:10.1007/s00441-010-1026-0
    Chugani, S. A., Whiteley, M., Lee, K. M., D'Argenio, D., Manoil, C., & Greenberg, E. P. (2001). QscR, a modulator of quorum-sensing signal synthesis and virulence in Pseudomonas aeruginosa. Proc Natl Acad Sci U S A, 98(5), 2752-2757. doi:10.1073/pnas.051624298
    D'Argenio, D. A., Gallagher, L. A., Berg, C. A., & Manoil, C. (2001). Drosophila as a model host for Pseudomonas aeruginosa infection. J Bacteriol, 183(4), 1466-1471. doi:10.1128/jb.183.4.1466-1471.2001
    Ding, W., Smulan, L. J., Hou, N. S., Taubert, S., Watts, J. L., & Walker, A. K. (2015). s-Adenosylmethionine Levels Govern Innate Immunity through Distinct Methylation-Dependent Pathways. Cell Metab, 22(4), 633-645. doi:10.1016/j.cmet.2015.07.013
    Eissenberg, J. C., James, T. C., Foster-Hartnett, D. M., Hartnett, T., Ngan, V., & Elgin, S. C. (1990). Mutation in a heterochromatin-specific chromosomal protein is associated with suppression of position-effect variegation in Drosophila melanogaster. Proc Natl Acad Sci U S A, 87(24), 9923-9927. doi:10.1073/pnas.87.24.9923
    Fortini, M. E., Skupski, M. P., Boguski, M. S., & Hariharan, I. K. (2000). A survey of human disease gene counterparts in the Drosophila genome. J Cell Biol, 150(2), F23-30. doi:10.1083/jcb.150.2.f23
    Gottar, M., Gobert, V., Michel, T., Belvin, M., Duyk, G., Hoffmann, J. A., . . . Royet, J. (2002). The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature, 416(6881), 640-644. doi:10.1038/nature734
    Govan, J. R., & Deretic, V. (1996). Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev, 60(3), 539-574.
    Govind, S. (2008). Innate immunity in Drosophila: Pathogens and pathways. Insect science, 15(1), 29-43. doi:10.1111/j.1744-7917.2008.00185.x
    Horn, L., Leips, J., & Starz-Gaiano, M. (2014). Phagocytic ability declines with age in adult Drosophila hemocytes. Aging Cell, 13(4), 719-728. doi:10.1111/acel.12227
    Hughes, C. E., Benson, R. A., Bedaj, M., & Maffia, P. (2016). Antigen-Presenting Cells and Antigen Presentation in Tertiary Lymphoid Organs. Front Immunol, 7, 481. doi:10.3389/fimmu.2016.00481
    Jain, A., & Pasare, C. (2017). Innate Control of Adaptive Immunity: Beyond the Three-Signal Paradigm. J Immunol, 198(10), 3791-3800. doi:10.4049/jimmunol.1602000
    James, T. C., Eissenberg, J. C., Craig, C., Dietrich, V., Hobson, A., & Elgin, S. C. (1989). Distribution patterns of HP1, a heterochromatin-associated nonhistone chromosomal protein of Drosophila. Eur J Cell Biol, 50(1), 170-180. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/2515059
    James, T. C., & Elgin, S. C. (1986). Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol Cell Biol, 6(11), 3862-3872. doi:10.1128/mcb.6.11.3862
    Jander, G., Rahme, L. G., & Ausubel, F. M. (2000). Positive correlation between virulence of Pseudomonas aeruginosa mutants in mice and insects. J Bacteriol, 182(13), 3843-3845. doi:10.1128/jb.182.13.3843-3845.2000
    Janeway, C. A., Jr., & Medzhitov, R. (2002). Innate immune recognition. Annu Rev Immunol, 20, 197-216. doi:10.1146/annurev.immunol.20.083001.084359
    Jang, J. H., Shin, H. W., Lee, J. M., Lee, H. W., Kim, E. C., & Park, S. H. (2015). An Overview of Pathogen Recognition Receptors for Innate Immunity in Dental Pulp. Mediators Inflamm, 2015, 794143. doi:10.1155/2015/794143
    Jin, J., Xie, X., Xiao, Y., Hu, H., Zou, Q., Cheng, X., & Sun, S. C. (2016). Epigenetic regulation of the expression of Il12 and Il23 and autoimmune inflammation by the deubiquitinase Trabid. Nat Immunol, 17(3), 259-268. doi:10.1038/ni.3347
    Kawai, T., & Akira, S. (2007). Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med, 13(11), 460-469. doi:10.1016/j.molmed.2007.09.002
    Kenmoku, H., Hori, A., Kuraishi, T., & Kurata, S. (2017). A novel mode of induction of the humoral innate immune response in Drosophila larvae. Dis Model Mech, 10(3), 271-281. doi:10.1242/dmm.027102
    Kounatidis, I., & Ligoxygakis, P. (2012). Drosophila as a model system to unravel the layers of innate immunity to infection. Open Biol, 2(5), 120075. doi:10.1098/rsob.120075
    Kustatscher, G., Wills, K. L., Furlan, C., & Rappsilber, J. (2014). Chromatin enrichment for proteomics. Nat Protoc, 9(9), 2090-2099. doi:10.1038/nprot.2014.142
    Kuznetsova, T., Prange, K. H. M., Glass, C. K., & de Winther, M. P. J. (2020). Transcriptional and epigenetic regulation of macrophages in atherosclerosis. Nat Rev Cardiol, 17(4), 216-228. doi:10.1038/s41569-019-0265-3
    Lemaitre, B., & Hoffmann, J. (2007). The host defense of Drosophila melanogaster. Annu Rev Immunol, 25, 697-743. doi:10.1146/annurev.immunol.25.022106.141615
    Lemaitre, B., Nicolas, E., Michaut, L., Reichhart, J. M., & Hoffmann, J. A. (1996). The dorsoventral regulatory gene cassette spätzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell, 86(6), 973-983. doi:10.1016/s0092-8674(00)80172-5
    Li, C., Wang, S., & He, J. (2019). The Two NF-kappaB Pathways Regulating Bacterial and WSSV Infection of Shrimp. Front Immunol, 10, 1785. doi:10.3389/fimmu.2019.01785
    Li, G., Domenico, J., Jia, Y., Lucas, J. J., & Gelfand, E. W. (2009). NF-kappaB-dependent induction of cathelicidin-related antimicrobial peptide in murine mast cells by lipopolysaccharide. Int Arch Allergy Immunol, 150(2), 122-132. doi:10.1159/000218115
    Li, Q., Lu, Q., Bottero, V., Estepa, G., Morrison, L., Mercurio, F., & Verma, I. M. (2005). Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1). Proc Natl Acad Sci U S A, 102(35), 12425-12430. doi:10.1073/pnas.0505997102
    Li, Y., Kirschmann, D. A., & Wallrath, L. L. (2002). Does heterochromatin protein 1 always follow code? Proc Natl Acad Sci U S A, 99 Suppl 4, 16462-16469. doi:10.1073/pnas.162371699
    Lomberk, G., Wallrath, L., & Urrutia, R. (2006). The Heterochromatin Protein 1 family. Genome Biol, 7(7), 228. doi:10.1186/gb-2006-7-7-228
    Lutter, E. I., Faria, M. M., Rabin, H. R., & Storey, D. G. (2008). Pseudomonas aeruginosa cystic fibrosis isolates from individual patients demonstrate a range of levels of lethality in two Drosophila melanogaster infection models. Infect Immun, 76(5), 1877-1888. doi:10.1128/iai.01165-07
    Meister, P., Schott, S., Bedet, C., Xiao, Y., Rohner, S., Bodennec, S., . . . Palladino, F. (2011). Caenorhabditis elegans Heterochromatin protein 1 (HPL-2) links developmental plasticity, longevity and lipid metabolism. Genome biology, 12(12), R123. doi:10.1186/gb-2011-12-12-r123
    Mitchell, S., Vargas, J., & Hoffmann, A. (2016). Signaling via the NFkappaB system. Wiley Interdiscip Rev Syst Biol Med, 8(3), 227-241. doi:10.1002/wsbm.1331
    Miyake, K., Ogata, H., Nagai, Y., Akashi, S., & Kimoto, M. (2000). Innate recognition of lipopolysaccharide by Toll-like receptor 4/MD-2 and RP105/MD-1. J Endotoxin Res, 6(5), 389-391. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11521060
    Panayidou, S., Ioannidou, E., & Apidianakis, Y. (2014). Human pathogenic bacteria, fungi, and viruses in Drosophila: disease modeling, lessons, and shortcomings. Virulence, 5(2), 253-269. doi:10.4161/viru.27524
    Philpott, D. J., & Girardin, S. E. (2004). The role of Toll-like receptors and Nod proteins in bacterial infection. Mol Immunol, 41(11), 1099-1108. doi:10.1016/j.molimm.2004.06.012
    Poltorak, A., He, X., Smirnova, I., Liu, M. Y., Van Huffel, C., Du, X., . . . Beutler, B. (1998). Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science, 282(5396), 2085-2088. doi:10.1126/science.282.5396.2085
    Rahme, L. G., Ausubel, F. M., Cao, H., Drenkard, E., Goumnerov, B. C., Lau, G. W., . . . Tompkins, R. G. (2000). Plants and animals share functionally common bacterial virulence factors. Proc Natl Acad Sci U S A, 97(16), 8815-8821. doi:10.1073/pnas.97.16.8815
    Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science, 268(5219), 1899-1902. doi:10.1126/science.7604262
    Rosales, C., & Uribe-Querol, E. (2017). Phagocytosis: A Fundamental Process in Immunity. Biomed Res Int, 2017, 9042851. doi:10.1155/2017/9042851
    Saccani, S., & Natoli, G. (2002). Dynamic changes in histone H3 Lys 9 methylation occurring at tightly regulated inducible inflammatory genes. Genes Dev, 16(17), 2219-2224. doi:10.1101/gad.232502
    Salminen, T. S., & Vale, P. F. (2020). Drosophila as a Model System to Investigate the Effects of Mitochondrial Variation on Innate Immunity. Front Immunol, 11, 521. doi:10.3389/fimmu.2020.00521
    Seong, K. H., Li, D., Shimizu, H., Nakamura, R., & Ishii, S. (2011). Inheritance of stress-induced, ATF-2-dependent epigenetic change. Cell, 145(7), 1049-1061. doi:10.1016/j.cell.2011.05.029
    Sharon, G., Segal, D., Ringo, J. M., Hefetz, A., Zilber-Rosenberg, I., & Rosenberg, E. (2010). Commensal bacteria play a role in mating preference of Drosophila melanogaster. Proc Natl Acad Sci U S A, 107(46), 20051-20056. doi:10.1073/pnas.1009906107
    Shivers, R. P., Pagano, D. J., Kooistra, T., Richardson, C. E., Reddy, K. C., Whitney, J. K., . . . Kim, D. H. (2010). Phosphorylation of the conserved transcription factor ATF-7 by PMK-1 p38 MAPK regulates innate immunity in Caenorhabditis elegans. PLoS Genet, 6(4), e1000892. doi:10.1371/journal.pgen.1000892
    Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J., & Leulier, F. (2011). Lactobacillus plantarum promotes Drosophila systemic growth by modulating hormonal signals through TOR-dependent nutrient sensing. Cell Metab, 14(3), 403-414. doi:10.1016/j.cmet.2011.07.012
    Stover, C. K., Pham, X. Q., Erwin, A. L., Mizoguchi, S. D., Warrener, P., Hickey, M. J., . . . Olson, M. V. (2000). Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature, 406(6799), 959-964. doi:10.1038/35023079
    Studencka, M., Konzer, A., Moneron, G., Wenzel, D., Opitz, L., Salinas-Riester, G., . . . Jedrusik-Bode, M. (2012). Novel roles of Caenorhabditis elegans heterochromatin protein HP1 and linker histone in the regulation of innate immune gene expression. Mol Cell Biol, 32(2), 251-265. doi:10.1128/MCB.05229-11
    Takeda, K., & Akira, S. (2005). Toll-like receptors in innate immunity. Int Immunol, 17(1), 1-14. doi:10.1093/intimm/dxh186
    Takeuchi, O., Hoshino, K., Kawai, T., Sanjo, H., Takada, H., Ogawa, T., . . . Akira, S. (1999). Differential roles of TLR2 and TLR4 in recognition of gram-negative and gram-positive bacterial cell wall components. Immunity, 11(4), 443-451. doi:10.1016/s1074-7613(00)80119-3
    Tzou, P., Ohresser, S., Ferrandon, D., Capovilla, M., Reichhart, J. M., Lemaitre, B., . . . Imler, J. L. (2000). Tissue-specific inducible expression of antimicrobial peptide genes in Drosophila surface epithelia. Immunity, 13(5), 737-748. doi:10.1016/s1074-7613(00)00072-8
    Tzou, P., Reichhart, J. M., & Lemaitre, B. (2002). Constitutive expression of a single antimicrobial peptide can restore wild-type resistance to infection in immunodeficient Drosophila mutants. Proc Natl Acad Sci U S A, 99(4), 2152-2157. doi:10.1073/pnas.042411999
    Vodovar, N., Vinals, M., Liehl, P., Basset, A., Degrouard, J., Spellman, P., . . . Lemaitre, B. (2005). Drosophila host defense after oral infection by an entomopathogenic Pseudomonas species. Proc Natl Acad Sci U S A, 102(32), 11414-11419. doi:10.1073/pnas.0502240102
    Yoshida, K., Maekawa, T., Zhu, Y., Renard-Guillet, C., Chatton, B., Inoue, K., . . . Ishii, S. (2015). The transcription factor ATF7 mediates lipopolysaccharide-induced epigenetic changes in macrophages involved in innate immunological memory. Nat Immunol, 16(10), 1034-1043. doi:10.1038/ni.3257
    Zhang, F. X., Kirschning, C. J., Mancinelli, R., Xu, X. P., Jin, Y., Faure, E., . . . Arditi, M. (1999). Bacterial lipopolysaccharide activates nuclear factor-kappaB through interleukin-1 signaling mediators in cultured human dermal endothelial cells and mononuclear phagocytes. J Biol Chem, 274(12), 7611-7614. doi:10.1074/jbc.274.12.7611
    Zhang, Q., & Cao, X. (2019). Epigenetic regulation of the innate immune response to infection. Nat Rev Immunol, 19(7), 417-432. doi:10.1038/s41577-019-0151-6

    無法下載圖示 校內:2025-07-30公開
    校外:不公開
    電子論文尚未授權公開,紙本請查館藏目錄
    QR CODE