簡易檢索 / 詳目顯示

研究生: 王力威
Wang, Lih-Wei
論文名稱: 穩定、積分及不穩定連續程序之鑑別與控制
Identification and Control for Stable, Integrating and Unstable Continuous Processes
指導教授: 黃世宏
Hwang, Shyh-Hong
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2003
畢業學年度: 91
語文別: 中文
論文頁數: 150
中文關鍵詞: 階次及時延之估測時間加權積分轉換時間及頻率加權積分轉換連續參數模式模式簡化負載擾動不穩定程序增益可安定性強健控制器設計簡單結構控制器連續線性化非線性控制器
外文關鍵詞: Estimation of Orders and Delays, Time-Weighted Integral Transform, Time- and Frequency-Weighted Integral Transform, Continuous Parametric Model, Model Reduction, Load Disturbances, Unstable Process, Gain Stabilizability, Robust Controller Design, Simple-Structure Controllers, Successive Linearization, Nonlinear Controller
相關次數: 點閱:183下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本論文首先針對穩定、積分及不穩定連續程序,提出一完整有效的鑑別方法。考慮到含偏位替續器實驗可針對各種穩定性的程序,在穩定閉環操作下激發出包含豐富程序訊息的輸入/輸出數據,該鑑別法直接利用替續器所產生之數據,發展時間加權積分轉換來將微分方程模式轉換成代數方程式,然後應用最小平方演算法來估測訊息未知程序的階次、時延以及模式參數。該法僅需少量的實驗數據就可獲得極佳的鑑別結果,且對量測雜訊及模式結構不吻合的情況具有高強韌性。此外,對於任意指定之模式階次,亦可輕易地估測適當的時延來取得簡化模式。

      在鑑別實驗過程中,各種不同動態且未量測的負載擾動會造成嚴重的估測誤差。針對這個問題,本文提出以時間及頻率加權積分轉換式來進行程序鑑別。當有未知負載擾動發生於替續器測試實驗時,所提鑑別方法可排除負載擾動的影響以獲得正確的參數模式。另外,藉由在替續器和程序之間放置一積分元件,該法亦可作為模式簡化技術,利用所產生之量測數據,輕易地決定任意指定階次所對應之適當時延,並獲得一個與重要頻率應答吻合的簡化模式。相較於其他須不斷反覆修正以消除負載擾動導致之訊號扭曲的方法,該法可直接利用扭曲數據來得到滿意的鑑別結果。

      為了滿足特定的設計規格,工業上有一些程序必須選擇開環不穩定操作點。本文將含一個或兩個不穩定極點的程序區分成三種動態類型,每一種動態類型對於控制器設計皆具有特殊的重要性。針對這些不穩定動態類型,本文推導出增益及替續器可安定性所須滿足的必要及充分條件,同時依不同的實驗操作條件,使用兩種非線性元件(其中之一為替續器)來激發程序輸入/輸出數據,並發展一有效步驟來鑑別具有適當階次(二階或三階)的不穩定時延模式。最後根據鑑別模式,以加權ISE為目標函數來設計最佳PID控制器。所設計之控制器可同時處理負載擾動及設定點改變,並且藉由滿足最大增益邊距來加強其強韌性。對於非線性連續攪拌槽反應器程序,所提之鑑別及控制器設計方法皆能獲得極佳的結果。

      有了正確之參數模式,本論文接著針對各種穩定、積分及不穩定程序動態,提出一控制器設計法,可藉由指定期望之閉環應答,輕易獲得具有簡單結構的強健控制器(PI、PID或高階型)。一般而言,雖然高階控制器可達成較佳的控制性能,但其強韌性卻較差,而且傳統的增益和相位邊距指標常無法偵測出此現象。因此,本文提出一新型強韌性指標來取代傳統的增益邊距,最佳強健控制器設計即可在相位邊距和該指標的不等式限制下,透過將負載擾動產生之誤差積分最小化來完成。同時透過對控制演算法的巧妙調整,可讓該控制器在處理設定點改變時,亦能產生具有低超越量之快速應答。

      多數化工程序的動態是非線性的,當有較大的設定點改變或負載擾動發生時,傳統線性控制器常難以達成理想的操作品質。因此,本文針對非線性穩定及不穩定程序,提出利用連續線性化的觀念來設計非線性控制器的方法。此法可在整個操作範圍直接利用現有的線性控制技術,也能確實反映一階項動態隨著操作點不同而變化的情況。對於非線性液位槽及連續攪拌槽反應器系統,模擬結果顯示所合成之非線性控制器確實可有效改善系統之動態應答。

      This dissertation first addresses the complete identification of stable, integrating and unstable continuous processes. Despite the stability of the process, a biased relay experiment can be performed to provide abundant process input-output data in stable closed-loop operation. Using the relay-induced data, an effective method is developed to estimate the order and time delay as well as the model parameters for a process with unknown information. The method is based on a time-weighted integral transform that converts continuous data sets into a number of algebraic equations for least-squares parameter estimation. The method utilizes merely a small amount of experimental data and is robust with respect to measurement noise and model structure mismatch. Furthermore, it can easily be applied as a model reduction technique by estimating an apparent delay for any specified order.

      Unmeasured load disturbances with widely different dynamics could cause significant errors in process identification. To remedy this issue, this dissertation presents a time- and frequency-weighted integral transform. The resultant identification method can determine the order and delay of the process and provide an accurate parametric model in the face of unknown load disturbances arising in relay tests. It can also be applied as a model reduction technique by inserting an integrating element between the relay and the process for plant tests. On the basis of the produced data, the technique can easily infer an apparent delay for any specified order and provide a reduced model valid for all frequencies of interest. In contrast with those methods that take iterative corrective action to remove distortion, the proposed method yields satisfactory results directly from disturbance-distorted data.

      There are some instances where a process must be operated at an open-loop unstable steady state to meet certain design specifications. In this dissertation, the process dynamics, involving one or two unstable poles, are classified into three types, which are of paramount importance in controller design. Necessary and sufficient conditions are addressed for gain and relay stabilizability of such dynamics. Two nonlinear elements, one being a relay, are employed to excite rich process input-output data for identification of three types of unstable processes. A design procedure is then developed to identify an unstable delayed model of appropriate order (second or third order), followed by the optimal PID controller design established based on the weighted ISE index. The resultant controller can cope with both load disturbances and set-point changes simultaneously and provide good robustness by satisfying the maximum gain margin criterion. The method is tested with good results on a nonlinear CSTR process.

      With a parametric model, a method is developed to design a robust controller for a wide range of stable, integrating and unstable process dynamics. The controller with a simple structure can be a PI, PID or higher-order type, whose parameters are determined simply by specifying the desired closed-loop response. However, the design of high-order controllers may result in good performance but very poor robustness, which is not detectable by the conventional indices of gain and phase margins. To avoid this, a robustness index is proposed as a replacement for the gain margin. Optimal controller design is then achievable by minimizing a designated error integral criterion for a load disturbance subject to inequality constraints on phase margin and the new robustness index. By a clever adjustment in control algorithms, the optimal design for a load disturbance can also give a fast response with a desired overshoot for a step set point change.

      The dynamics of most chemical processes are nonlinear. The conventional linear control techniques cannot achieve satisfactory performance quality when larger variations appear in set point or load. Therefore, a method is proposed to design a nonlinear controller by means of the concept of successive linearization for nonlinear stable and unstable processes. The main advantage of this approach is that the available linear control techniques can be applied around the whole equilibrium manifold. Moreover, it can account for the variations of the first-order terms with respect to the operating points. For nonlinear level-tank and continuous stirred tank reactor systems, the simulation results reveal that the synthesized nonlinear controller indeed can improve the dynamic responses of the system.

    表目錄 i 圖目錄 ii 符號說明 v 第一章 緒論 1     1.1 研究動機與目的 1     1.2 文獻回顧 3       1.2.1 穩定程序鑑別 3       1.2.2 不穩定程序鑑別 5       1.2.3 線性控制器設計 6       1.2.4 非線性控制器設計 8     1.3 章節與組織 9 第二章 模式結構及穩定性未知之程序鑑別 11     2.1 前言 11     2.2 穩定、積分及不穩定連續程序模式 12     2.3 含偏位替續器鑑別實驗 14     2.4 時間加權積分轉換 15     2.5 移動區間最小平方演算法 17     2.6 移動區間長度之選擇 18     2.7 恆態增益之估測 20     2.8 模式階次及時延之估測 20     2.9 模擬範例 22 第三章 未知負載擾動影響下之程序鑑別及模式簡化 36     3.1 前言 36     3.2 時間及頻率加權積分轉換 37     3.3 負載擾動對替續器鑑別測試之影響 39     3.4 藉由頻率加權來排除負載擾動之技巧 42     3.5 模式階次及時延之估測 45     3.6 模式簡化技術 52     3.7 簡化模式之鑑別 54 第四章 三種動態類型之不穩定程序的鑑別與控制 59     4.1 前言 59     4.2 具增益可安定性之不穩定程序的三種常見類型 59     4.3 非線性平方元件─最小點之鑑別 68     4.4 替續器元件─最大點之鑑別 70     4.5 兩種非線性元件鑑別測試的實際觀點 73     4.6 鑑別方法 74     4.7 PID控制器設計 77     4.8 線性不穩定程序之模擬研究 78     4.9 非線性CSTR程序之模擬研究 84 第五章 可處理穩定、積分及不穩定程序且具簡單結構之強健控制器設計 90     5.1 前言 90     5.2 控制器設計演算法 91     5.3 參數alpha之選擇 95     5.4 特徵多項式之設定 97     5.5 強韌性考量 100       5.5.1 開環不穩定程序之增益及相位邊距 100       5.5.2 新型強韌性指標 101     5.6 強健最佳控制器之設計步驟 107     5.7 模擬範例 108 第六章 從連續線性化觀點合成非線性控制器 119     6.1 前言 119     6.2 連續線性化原理 119     6.3 非線性PID控制器設計 121     6.4 非線性IMC控制器設計 127     6.5 含輸出階梯擾動觀測器之倒退範圍控制 133     6.6 含狀態估測之二次動態矩陣控制 138 第七章 結論與展望 142 參考文獻 145

    [1] Agarwal, P. and H. C. Lim; “Analysis of Various Control Schemes for Continuous Bioreactors,” Adv. Biochem. Biotechnol., 30, 61 (1986).

    [2] Ananth, I. and M. Chidambaram; “Closed-Loop Identification of Transfer Function Model for Unstable Systems,” Journal of the Franklin Institute, 336, 1055 (1999).

    [3] Åström, K. J. and T. Hägglund; “Automatic tuning of simple regulators with specifications on phase and amplitude margins,” Automatica, 20, 645 (1984).

    [4] Åström, K. J. and T. Hägglund; Automatic Tuning of PID Controllers, Instrument Society of America, Research Triangle Park, NC (1988).

    [5] Atherton, D. P. and A. F. Boz; “Using standard forms for controller design,” UKACC International Conference on Control ’98, IEE Conference Publication, No. 455, pp. 1066 (1998).

    [6] Baumann, W. T. and W. J. Rugh; “Feedback Control of Nonlinear Systems by Extended Linearization,” IEEE Trans. Auto. Control, 32, 40 (1986).

    [7] Bequette, B. W.; “Nonlinear Control of Chemical Processes : A Review,” Ind. Eng. Chem. Res., 30, 1391 (1991).

    [8] Bi, Q, Q. G. Wang and C. C. Hang; “Relay-Based Estimation of Multiple Points on Process Frequency Response,” Automatica, 33, 1753 (1997).

    [9] Chen, C. L.; “A simple Method for On-Line Identification and Controller Tuning,” AIChE J., 35, 2037 (1989).

    [10] Chien, I. L. and P. S. Fruehauf; “Consider IMC tuning to improve controller performance,” Chem. Eng. Prog., 86, 33 (1990).

    [11] Chiu, M. S., S. Cui and Q. G. Wang; “Internal Model Control Design for Transition Control,” AIChE J., 46, 309 (2000)

    [12] Coughanowr, D. R.; Process Systems Analysis and Control, McGraw-Hill: Singapore (1991).

    [13] Culter, C. R. and B. L. Ramaker; “Dynamic Matrix Control - A Computer Control Algorithm,” Proc. JACC, SP-8, New York (1980).

    [14] De Paor, A. M. and M. O’Malley; “Controllers of Ziegler-Nichols type for unstable process with time delay,” Int. J. Control, 49, 1273 (1989).

    [15] Friman, M. and K. V. Waller; “A Two-Channel Relay for Autotuning,” Ind. Eng. Chem. Res., 36, 2662 (1997).

    [16] Garcia, C. E. and M. Morari; “Internal model control: 1. A unifying review and some new results,” Ind. Eng. Chem. Proc. Des. & Dev., 21, 308 (1982).

    [17] Garcia, C. E.; “Quadratic/Dynamic Matrix Control of Nonlinear Process: An Application to a Batch Reaction Process,” AIChE Annual Meeting, San Francisco, CA (1984).

    [18] Garcia, C. E. and A. M. Morshedi; “Quadratic Programming Solution of Dynamic Matrix Control (QDMC),” Chem. Eng. Comm., 46, 73 (1986).

    [19] Garnier, H., P. Sibille and H. L. Nguyen;“A new bias-compensating least-squares method for continuous-time mimo system identification applied to a laboratory-scale process,” Proceedings of the Third IEEE Conference: Control Applications, pp. 1711 (1994).

    [20] Gattu, G. and E. Zafiriou; “Nonlinear Quadratic Dynamic Matrix Conrol with State Estimation,” Ind. Eng. Chem. Res., 31, 1096 (1992).

    [21] Hang, C. C. and K. J. Åström; “Practical Aspects of PID Auto-Tuners Based on Relay Feedback,” Proc. of IFAC Int. Symposium on Adaptive Control of Chemical Processes, pp. 153, Copenhagen, Denmark (1988).

    [22] Hang, C. C., K. J. Åström and W. K. Ho; “Relay Auto-Tuning in the Presence of Static Load Disturbance,” Automatica, 29, 563 (1993).

    [23] Ho, W. K., K. W. Lim and W. Xu; “Optimal gain and phase margin tuning for PID controllers,” Automatica, 34, 1009 (1998).

    [24] Hsia, T. C.; System Identification - Least-Squares Methods, Lexington Books: Lexington (1977).

    [25] Huang, C. T. and Y. S. Lin;“Tuning PID controller for open-loop unstable processes with time delay,” Chem. Eng. Comm., 133, 11 (1995).

    [26] Huang, H. P., C. L. Chen, G. B. Wang and C. W. Lai; “Estimation of SOPDT Transfer Function Models Using an Auto-Tuning Test,” J. Chin. Inst. Chem. Engrs., 27, 153 (1996).

    [27] Huang, H. P. and C. C. Chen; “A New Approach to Identify Low Order Model for Process Having Single Unstable pole,” SAMS, 29, 163 (1997a).

    [28] Huang, H. P. and C. C. Chen; “Control-System Synthesis for Open-Loop Unstable Process with Time Delay,” IEE Proc. Control Theory Appl., 144, 334 (1997b).

    [29] Huang, H. P. and C. C. Chen; “Auto-Tuning of PID Controllers for Second Order Unstable Process Having Dead Time,” J. Chem. Eng. Japan, 32, 486 (1999).

    [30] Hwang, S. H.; “Adaptive Dominant Pole Design of PID Controllers Based on a Single Closed-Loop Test,” Chem. Eng. Comm., 124, 131 (1993).

    [31] Hwang, S. H. and S. J. Shiu;“A new autotuning method with specifications on dominant pole placement,” Int. J. Control, 60, 265 (1994).

    [32] Hwang, S. H.; “Closed-Loop Automatic Tuning of Single-Input/Single-Output Systems,” Ind. Eng. Chem. Res., 34, 2406 (1995).

    [33] Hwang, S. H. and S. M. Fang; “Closed-Loop Tuning Method Based on Dominant Pole Placement,” Chem. Eng. Comm., 136, 45 (1995).

    [34] Hwang, S. H. and M. L. Lin; “Unbiased Identification of Continuous-Time Parametric Models Using a Time-Weighted Integral Transform,” Chem. Eng. Comm., in press (2003).

    [35] Jutan, A. and E. S. Rodriguez II; “Extension of a New Method for On-Line Controller tuning,” AIChE J., 62, 802 (1984).

    [36] Kavdia, M. and M. Chidambaram; “On-Line Controller Tuning for Unstable Systems,” Computers chem. Engng., 20, 301 (1996)

    [37] Kaya, I. and D. P. Atherton; “Parameter Estimation from Relay Autotuning with Asymmetric Limit Cycle Data,” J. Process Control, 11, 429 (2001).

    [38] Kiparissides, C., J. F. MacGregor and A. Hamielec; “Continuous Emulsion Polymerization. Modeling Oscillations in Vinyl Acetate Polymerization,” J. Appl. Polym. Sci., 23, 401 (1979).

    [39] Lee, J., W. Cho and T. F. Edgar; “ An Improved Technique for PID Controller Tuning from Closed-Loop Test,” AIChE J., 36, 1891 (1990).

    [40] Lee, Y., S. Park, M. Lee and C. Brosilow; “PID controller tuning for desired closed-loop responses for SI/SO systems,” AIChE J., 44, 106 (1998).

    [41] Lee, Y., J. Lee and S. Park; “PID controller tuning for integrating and unstable processes with time delay,” Chem. Eng. Sci., 55, 3481 (2000).

    [42] Li, W., E. Eskinat and W. L. Luyben; “An Improved Autotune Identification Method,” Ind. Eng. Chem. Res., 30, 1530 (1991).

    [43] Lightbody, G. and G. W. Irwin; “Direct Neural Model Reference Adaptive Control,” IEE Proc., Part D, 142, 31 (1995).

    [44] Lin, C. F.; Advanced Control System Design, Prentice-Hall, NJ (1994).

    [45] Lion, P. M.;“Rapid identification of linear and nonlinear systems,” JACC Proceedings, pp. 605 (1966).

    [46] Litvinov, N. D.; “A method for placing the roots of a characteristic polynomial guaranteeing given stability degree and oscillation index of a system,” Automation and Remote Control, 56, 498 (1995).

    [47] Lopez, A. M., P. W. Murrill and C. L. Smith; “Controller tuning relationships based on integral performance criteria,” Instrum. Technol., 14, 57 (1967).

    [48] Luyben, W. L. and M. L. Luyben; Essentials of Process Control, McGraw-Hill: New York (1997).

    [49] Majhi, S. and D. P. Atherton; “Autotuning and Controller Design for Processes with Small Time Delays,” IEE Proc. Control Theory Appl., 146, 415 (1999).

    [50] Marchetti, G., C. Scali and D. R. Lewin; “Identification and Control of Open-Loop Unstable Processes by Relay Methods,” Automatica, 37, 2049 (2001).

    [51] Morari, M. and E. Zafiriou; Robust Process Control, Prentice Hall: Englewood Cliffs, NJ (1989).

    [52] Muske, K. R. and J. B. Rawlings; “Model Predictive Control with Linear Models,” AIChE J., 39, 262 (1993).

    [53] Nishikawa, Y., N. Sannomiya, T. Ohta and H. Tanaka; “A Method for Auto-tuning of PID Control Parameters,” Automatica, 20, 321 (1984).

    [54] Park, J. H., S. W. Sung and I. B. Lee; “Improved Relay Auto-Tuning with Static Load Disturbance,” Automatica, 33, 711 (1997).

    [55] Rivera, D. E., M. Morari and S. Skogestad; “Internal model control: 4. PID controller Design,” Ind. Eng. Chem. Proc. Des. & Dev., 25, 252 (1986).

    [56] Rugh, W. J.; “Design of Nonlinear PID Controllers,” AIChE J., 33, 1738 (1987).

    [57] Russo, L. P. and B. W. Bequette; “Impact of Process Design on the Multiplicity Behavior of a Jacketed Exothermic CSTR,” AIChE J., 41, 135 (1995).

    [58] Sagara, S. and Z. Y. Zhao;“Recursive identification of transfer function matrix in continuous systems via linear integral filter,” Int. J. Control, 50, 457 (1989).

    [59] Scali, C., G. Marchetti and D. Semino;“Relay with additional delay for identification and autotuning of completely unknown processes,” Ind. Eng. Chem. Res., 38, 1987 (1999).

    [60] Seborg, D. E., T. F. Edgar and D. A. Mellichamp; Process Dynamics and Control; John Wiley & Sons: New York (1989).

    [61] Semino, D.; “Automatic Tuning of PID Controllers for Unstable Processes,” IFAC Advanced Control of Chemical Processes, pp. 321, Kyoto, Japan (1994).

    [62] Shen, S. H., J. S. Wu and C. C. Yu; “Use of Biased-Relay Feedback for System Identification,” AIChE J., 42, 1174 (1996a).

    [63] Shen, S. H., J. S. Wu and C. C. Yu; “Autotune Identification under Load Disturbance,” Ind. Eng. Chem. Res., 35, 1642 (1996b).

    [64] Shiu, S. J. and S. H. Hwang;“System identification using open-loop or closed-loop relay feedback,” Symposium on Computer Process Control, pp. 96, Taipei, ROC (1995).

    [65] Shiu, S. J., S. H. Hwang and M. L. Lin; “Automatic Tuning of Systems with One or Two Unstable Poles,” Chem. Eng. Comm., 167, 51 (1998).

    [66] Smith, C. A. and A. B. Corripio; Principles and Practice of Automatic Process Control, John Wiley & Sons: Singapore (1997).

    [67] Smith, C. L; Digital Computer Process Control, Intext Educational Publishers: Scranton, PA (1972).

    [68] Smith, C. L., A. B. Corripio and J. Martin Jr.; “Controller tuning from simple process models,” Instrum. Technol., 22, 39 (1975).

    [69] Sung, S. W., J. O, I. B. Lee, J. Lee and S. H. Yi; “Automatic tuning of PID controller using second-order plus time delay model,” J. Chem. Eng. Japan, 29, 990 (1996).

    [70] Sung, S. W., I. B. Lee and J. Lee;“New process identification method for automatic design of PID controllers,” Automatica, 34, 513 (1998).

    [71] Uppal, A., W. H. Ray and A. B. Poore; “On the Dynamic Behavior of Continuous Stirred Tank Reactors,” Chem. Eng. Sci., 29, 967 (1974).

    [72] Venkatashankar, V. and M. Chidambaram; “Design of P and PI controllers for Unstable First-Order plus Time Delay Systems,” Int. J. Control, 60, 137 (1994).

    [73] Walton, K and J. E. Marshall; “Closed Form Solution for Time Delay Systems’ Cost Functionals,” Int. J. Control, 39, 1063 (1984).

    [74] Wang, F. S.; “Adaptive root-locus control for SISO process with time delays,” Optimal Control Applications & Methods, 11, 211 (1990).

    [75] Wang, G. B. and H. Y. Lee; “Multiple Linear Model Predictive Control of Nonlinear Unstable Processes,” Proceedings of PSE Asia 2000, pp. 41, Kyoto, Japan (2000).

    [76] Wang, Q. G., T. H. Lee and K. K. Tan; “Relay-Tuned FSA Control for Unstable Processes with Deadtime,” Proceedings of ACC, pp. 311, Seattle, USA (1995).

    [77] Wang, Q. G. and Y. Zhang; “Robust Identification of Continuous Systems with Dead-Time from Step Responses,” Automatica, 37, 377 (2001).

    [78] Yuwana, M and D. E. Seborg; “A New Method for On-Line Controller Tuning,” AIChE J., 28, 434 (1982).

    [79] Ziegler, J. G. and N. B. Nichols; “Optimum Settings for Automatic Controllers,” Trans. ASME, 64, 759 (1942).

    下載圖示 校內:立即公開
    校外:2003-03-25公開
    QR CODE