簡易檢索 / 詳目顯示

研究生: 王亭雅
Wang, Ting-Ya
論文名稱: 水泥乳化瀝青系統破乳凝結機制之流變特性
Rheological characterization of the breaking and curing mechanism of cement asphalt emulsion system
指導教授: 楊士賢
Yang, Shih-Hsien
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 75
中文關鍵詞: 乳化瀝青儲存穩定性流變行為
外文關鍵詞: Asphalt emulsion, Storage stability, Rheological characterization
相關次數: 點閱:113下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 交通運輸是國家經濟的命脈,為確保道路鋪面資產之服務品質,政府每年都必須花費大量的資金與資源對道路設施進行維護與修繕,然而自工業革命以來,地球的自然資源被大量的消耗著,且在全球暖化日益嚴重的趨勢下,為因應節能減碳的政策,在道路的養護與維修技術層面,已有鋪面預防性養護工法,其中一種為超微表技術(Microsurfacing)。然而目前超微表技術在材料配比設計過程中,有部分試驗方法與並未基於材料基本力學性質而設置,且試驗結果之判讀容易受到操作者的主觀判斷影響,使得規範指標無法有效連結超微表技術於製程中之品質管制與現地使用時之材料行為模式,因此本研究之目的在於發展基於材料基礎性質之成效試驗,並建立基於乳化瀝青材料流變行為之短期成效指標。本研究於乳化瀝青材料配比設計中,將透過量測乳化瀝青顆粒粒徑大小與界面電荷的測定,依據乳化瀝青溶液中瀝青微粒之電位差,分析粒徑分布與電位差對儲存穩定性之影響,將結果與原有之儲存穩定性規範試驗比較,得到最佳化之乳化瀝青材料製程配比,此外將依據乳化瀝青種類、溫度、骨材表面電荷等因素改良原有的動態剪切流變試驗,改善現有之乳化瀝青規範實驗中過於主觀判定結果的缺陷,用以評估材料之施工性與可開放交通時間。粒徑分佈試驗結果顯示在特定製備條件下時(瀝青加熱溫度140℃、剪切時間2分鐘),擁有最佳之成品品質,且透過變異數分析得知瀝青加熱溫度與時間確實是影響顆粒粒徑的顯著變因。界面電位試驗結果顯示乳化瀝青顆粒粒徑將會影響其界面電位值,且乳化瀝青儲存穩定性與顆粒粒徑及界面電位均有相關性。動態剪切流變試驗結果經由計算可得知乳化瀝青於各條件下之破乳速度,且透過關聯性分析發現其試驗結果與規範成效試驗呈現正相關性。

    The objective of this study is to develop performance test based on the fundamental material properties, explore the process design of the asphalt emulsion material, obtain more objective and accurate results through the non-standard test, and to establish short-term performance indicators based on the rheological behavior of emulsified asphalt materials.
    The result of the particle size distribution test showed that the optimum quality was obtained under a specific preparation condition (asphalt heating temperature of 140 degrees and shearing time of 2 minutes). And it is assured that asphalt heating temperature and shearing time are significant variations due to the influence of the particle size through the ANOVA analysis. The results of zeta potential test showed that the particle size of asphalt emulsion will affect the potential value in the solution, and the storage stability of asphalt emulsion is related to the particle size and zeta potential. The results of dynamic shear rheological test can be used to calculate the breaking rate of asphalt emulsion under various conditions, and it is found that the test results and standard specification test showed a positive correlation through the correlation analysis.

    第一章 緒論 - 1 - 1.1前言 - 1 - 1.2研究動機 - 3 - 1.3研究目的 - 4 - 1.4研究範圍 - 4 - 1.5論文內容與組織 - 5 - 第二章 文獻回顧 - 6 - 2.1乳化瀝青 - 6 - 2.2乳化瀝青原理與機制 - 6 - 2.3乳化瀝青儲存穩定性 - 8 - 2.3.1界面膜的性質 - 8 - 2.3.2界面電荷 - 10 - 2.3.3乳化瀝青顆粒粒徑 - 14 - 2.4乳化瀝青破乳與固化 - 15 - 2.5乳化瀝青/瀝青之流變行為 - 19 - 第3章 研究方法 - 21 - 3.1試驗材料 - 22 - 3.1.1乳化劑 - 22 - 3.1.2乳化瀝青 - 23 - 3.1.3骨材 - 25 - 3.1.4超微表乳化瀝青稀漿混合料 - 26 - 3.2試驗方法 - 28 - 3.2.1乳化瀝青粒徑分布 - 28 - 3.2.2乳化瀝青與骨材界面電位分析 - 31 - 3.2.3乳化瀝青破乳凝結過程之流變行為 - 32 - 3.2.4超微表乳化瀝青稀漿混合料黏聚力 - 37 - 第四章 結果與討論 - 42 - 4.1乳化瀝青儲存穩定性分析 - 42 - 4.1.1乳化瀝青備製條件對粒徑分佈的影響 - 42 - 4.1.2粒徑分佈對儲存穩定的影響 - 44 - 4.1.3界面電位對儲存穩定的影響 - 47 - 4.2水泥乳化瀝青稀漿破乳與凝結之流變行為 - 50 - 4.2.1乳化劑種類 - 50 - 4.2.2環境溫度 - 52 - 4.2.3骨材種類 - 54 - 4.2.4水泥乳化瀝青 - 55 - 4.3初凝時間 - 57 - 4.3.1初凝時間試驗 - 57 - 4.3.2黏聚力試驗(Cohession test) - 60 - 4.4討論 - 62 - 4.4.1儲存穩定性 - 62 - 4.4.2破乳凝結階段 - 64 - 第五章 結論與建議 - 69 - 5.1結論 - 69 - 5.2後續研究方向 - 71 - 第六章 參考文獻 - 72 -

    Alwadani, M. S. (2010). Characterization and rheology of water-in-oil emulsion from deepwater fields (Doctoral dissertation, Rice University).
    Banerjee, A., Bhasin, A., & Prozzi, J. (2012). Characterizing stability of asphalt emulsions using electrokinetic techniques. Journal of Materials in Civil Engineering, 25(1), 78-85.
    Hefer, A. W., Little, D. N., & Lytton, R. L. (2005). A synthesis of theories and mechanisms of bitumen-aggregate adhesion including recent advances in quantifying the effects of water. Journal of the association of asphalt paving technologists, 74, 139-196.
    ASTM International. (2010). Standard Test Method for Settlement and Storage Stability of Emulsified Asphalts. USA.
    ASTM International. (2015). Standard Practices for Design, Testing, and Construction of Slurry Seal. USA.
    Mellinger, A. (2004). Charge storage in electret polymers: mechanisms, characterization and applications. University of Postdam.
    Broughton, B., Lee, S. J., & Kim, Y. J. (2012). 30 Years of Microsurfacing: A Review. ISRN Civil Engineering, 2012.
    Banerjee, A. (2012). Breaking and curing rates in asphalt emulsions (Doctoral dissertation).
    Allan, G. (2002, March). History of slurry and the international slurry surfacing association. In Proceedings of the International Slurry Surfacing Association’s 5th World Congress.
    Griffin, W. C. (1954). Calculation of HLB values of non-ionic surfactants. J Soc Cosmet Chemists, 5, 249-256.
    Hanz, A., Arega, Z., & Bahia, H. (2008, September). Advanced methods for quantifying emulsion setting and adhesion to aggregates. In ISAET Symposium.
    HOLLERAN, G., & HOLLERAN, I. (2008, July). Coalescence control in sealing emulsions to promote break and cure under variable conditions. In International Sprayed Sealing Conference, 1st, 2008, Adelaide, South Australia, Australia.
    Hunter, R. J. (1993). Introduction to modern colloid science. Oxford University Press.
    Dybaiski, J. N. (1976, January). The Chemistry of Asphalt Emulsions. In Proc. of Transportation Research Board Annual Meeting.
    Takamura, K., Lok, K. P., Wittlinger, R., & Aktiengesellschaft, B. A. S. F. (2001, March). Microsurfacing for preventive maintenance: eco-efficient strategy. In International Slurry Seal Association Annual Meeting, Maui, Hawaii (p. 5).
    Lin, J., Wei, T., Hong, J., Zhao, Y., & Liu, J. (2015). Research on development mechanism of early-stage strength for cold recycled asphalt mixture using emulsion asphalt. Construction and Building Materials, 99, 137-142.
    Losa, M., & Natale, A. (2012). Evaluation of representative loading frequency for linear elastic analysis of asphalt pavements. Transportation Research Record: Journal of the Transportation Research Board, (2305), 150-161.
    McGraw, H. (2003). Dictionary of scientific and technical terms. Sybil P. Parker.
    Myers, D. (1990). Surfaces, interfaces and colloids. New York etc.: Wiley-Vch.
    TO, S. O. M. L. (2011). Emulsion Stability and Testing.
    Ren, L., Escobedo-Canseco, C., & Li, D. (2002). A new method of evaluating the average electro-osmotic velocity in microchannels. Journal of colloid and interface science, 250(1), 238-242.
    Ronald, M., & Luis, F. P. (2016). Asphalt emulsions formulation: state-of-the-art and dependency of formulation on emulsions properties. Construction and Building Materials, 123, 162-173.
    Salomon, D. R. (2006). Asphalt emulsion technology. Transportation Research Board.
    Sergio Serment-Moren,, Moisés Hinojosa,, Rosita Martínez,, & Edgar Reyes,. (2016). Evolution of the rheological behavior of asphalt emulsions.
    Erwin, T., & Tighe, S. (2008). Safety effect of preventive maintenance: a case study of microsurfacing. Transportation Research Record: Journal of the Transportation Research Board, (2044), 79-85.
    Tadros, T. F. (Ed.). (2013). Emulsion formation and stability. John Wiley & Sons.
    Tian, Y., Yu, Y., & Zhang, Y. Z. (2012). Influence of Particle Sizes of Asphalt Emulsion on the Properties of Cement and Asphalt Mortar. In Applied Mechanics and Materials (Vol. 174, pp. 336-340). Trans Tech Publications.
    Zhai, H., Salomon, D., & Milliron, E. (2006). Using Rheological Properties to Evaluate Storage Stability and Setting Behaviors of Emulsified Asphalts. Idaho Asphalt Supply, Inc. White Paper, Idaho (USA).
    中國公路瀝青路面設計規範. (1993). 乳化瀝青破乳速度試驗.
    杜嘉崇, 蕭炎泉, & 李東林. (2005). 乳化瀝青常溫拌合特性之研究. 臺灣公路工程第31卷第12期-526.
    周家華, & 崔英德. (2001). 表面活性劑HLB值得分析測定與計算. 廣東工業大學輕工化工學院.
    徐静, 洪錦祥, 劉加平, & 萬赟. (2013). 陽離子對陰離子型乳化瀝青儲存稳定性的影響. 建築材料學報, 16(5), 824-828.
    莊月明. (2008). 淺談乳化瀝青的儲存稳定性. 現代交通技術, 2.
    馮雷雷. (2009). 改性乳化瀝青的製備及性能 (Doctoral dissertation, 西安: 西北大學).
    郭安聰. (2007). 具不同帶電面之微管道壁面zeta potential的量測. 國立成功大學化學工程學系學位論文, 1-134.
    黄薇. (2009). 有機矽非離子表面活性劑(一). 有機矽材料, 23(2), 126-128.
    劉東杰. (2006). 改性乳化瀝青的製備及其應用研究. (Doctoral dissertation, 西北師範大學).

    下載圖示 校內:2020-09-01公開
    校外:2020-09-01公開
    QR CODE