| 研究生: |
黃柏松 Huang, Po-Sung |
|---|---|
| 論文名稱: |
透過緊密連接卷積神經網路開發自動化銑削製程規劃系統 Development of Automatic Milling Process Planning System by Densely Connected Convolutional Neural Networks |
| 指導教授: |
鍾俊輝
Chung, Chun-Hui |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2023 |
| 畢業學年度: | 111 |
| 語文別: | 中文 |
| 論文頁數: | 127 |
| 中文關鍵詞: | 預訓練模型 、遷移學習 、3D銑削路徑 、刀具路徑參數預測 、CNC加工 |
| 外文關鍵詞: | Pre-training model, Transfer Learning, Milling path of 3D, Prediction of tool path parameters, CNC |
| 相關次數: | 點閱:89 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
[1] S.Igari, F.Tanaka, M.Onosato, “Computer-aided operation planning for an actual machine tool based on updatable machining database and database-oriented planning algorithm”, Int. J. of Automation Technology, Vol.6, No.6, pp. 717-723, 2012, doi: 10.20965/ijat.2012.p0717.
[2] E.O.Ezugwu, S.J.Arthur, E. L.Hines, “Tool-wear prediction using artificial neural networks”, J. of Materials Processing Technology, Vol.49, No.3-4, pp.255-265, 1996, doi:10.1016/0924-0136(94)01351-Z.
[3] G. C. Onwubolu, “Manufacturing features recognition using backpropagation neural networks”, J. of Intelligent Manufacturing, Vol.10, No.3-4, pp.289-299, 1999, doi: 10.1023/a:1008904109029.
[4] Q. Sun, Z. Yu, Y. Li, S. Yang, J. Xu and H. Yu, “Wear status prediction of micro milling tools by transfer learning and ViT model”, 2021 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO), pp. 183-187, 2021 ,doi: 10.1109/3M-NANO49087.2021.9599807.
[5] T. Bergs, C. Holst, P. Gupta, and T. Augspurger, “Digital image processing with deep learning for automated cutting tool wear detection,” Procedia Manufacturing, Vol.48, pp. 947-958, 2020, doi: 10.1016/j.promfg.2020.05.134.
[6] M. M. Isnaini and K. Shirase, “Review of computer-aided process planning systems for machining operation – future development of a computer-aided process planning system”, Int. J. Automation Technology, Vol.5, No.5, pp. 317-332, 2014, doi: 10.20965/ijat.2014.p0317.
[7] M. M. Isnaini, Y. Shinoki, R. Sato, K. Shirase, “Development of a CAD-CAM interaction system to generate a flexible machining process plan”, Int. J. of Automation Technology, Vol.9, No.2, pp. 104-114, 2015, doi: 10.20965/ijat.2015.p0104.
[8] E. Morinaga, T. Hara, H. Joko, H. Wakamatsu, E. Arai, “Improvement of computational efficiency in flexible computer-aided process planning”, Int. J. of Automation Technology, Vol.8, No.3, pp. 396-405, 2014, doi: 10.20965/ijat.2014.p0396.
[9] K. Shirase, K. Nakamoto, “Simulation technologies for the development of an autonomous and intelligent machine tool”, Int. J. of Automation Technology, Vol.7, No.1, pp. 6-15, 2013, doi: 10.20965/ijat.2013.p0006.
[10] M. Hashimoto, K. Nakamoto, “A Neural Network Based Process Planning System to Infer Tool Path Pattern for Complicated Surface Machining”, Int. J. of Automation Technology, Vol.13, No.1, pp.67-73, 2019, doi: 10.20965/ijat.2019.p0067.
[11] M. Hashimoto, K. Nakamoto, “Process Planning for Die and Mold Machining Based on Pattern Recognition and Deep Learning”, J. of Advanced Mechanical Design, Systems, and Manufacturing, Vol.15, No.2, JAMDSM0015, 2021, doi: 10.1299/JAMDSM.2021JAMDSM0015.
[12] O. Cicek, A. Abdulkadir, S. S. Lienkamp, T. Brox, O. Ronneberger, “3d U-Net: Learning dense volumetric segmentation from sparse annotation”, International Conference on Medical Image Computing and Computer-Assisted Intervention – MICCAI 2016, Part II, pp. 424-432, 2016, doi: 10.1007/978-3-319-46723-8_49.
[13] L. Chen, P. Bender, P. Renton, T. El-Wardany, “Integrated virtual manufacturing systems for process optimization and monitoring”, CIRP Annals- Manufacturing Technology, Vol.51, No.1, pp. 409-412, 2002, doi:10.1016/S0007-8506(07)61548-0.
[14] Y. Altintas, S. D. Merdol, “Virtual high-performance milling”, CIRP Annals- Manufacturing Technology, Vol.56, No.1, pp.81–84, 2007, doi: 10.1016/j.cirp.2007.05.022.
[15] T. Deng, Y. Li, X. Liu, P. Wang, K. Lu, “A data-drivenParameter planning method for structural parts NC machining”, Robotics and Computer-Integrated Manufacturing, Vol.68, 2021, Article 102080, doi: 10.1016/j.rcim.2020.102080.
[16] A. M. Ramos, C. Relvas, J. A. Simoes, “The influence of finishing milling strategies on texture, roughness and dimensional deviations on the machining of complex surfaces”, J. of Materials Processing Technology, Vol.136, No.1-3, pp.209-216, 2003, doi:10.1016/S0924-0136(03)00160-2.
[17] M. Rybicki, “Problems during milling and roughness registration of free-form surfaces”, J. of Physics: Conference Series, Vol.483, 012007, 2014, doi:10.1088/1742-6596/483/1/012007.
[18] C. Manav, H. S. Bank, I. Lazoglu, “Intelligent toolpath selection via multi-criteria optimization in complex sculptured surface milling”, J. of Intelligent Manufacturing, Vol.24, No.2, pp. 349-355, 2013, doi: 10.1007/s10845-011-0596-3.
[19] I. A. Shchurov, L. H. Al-Taie, “Constant scallop-height tool path generation for ball-end mill cutters and three-axis CNC milling machines”. Procedia Engineering, Vol.206, pp.1137-1141, 2017, doi: 10.1016/j.proeng.2017.10.607.
[20] R. Q. Sardinas, P. Reis, J. P. Davim, “Multi-objective optimization of cutting parameters for drilling laminate composite materials by using genetic algorithms”, Composites Science and Technology, Vol.66, No.15, pp.3083–3088, 2006, doi: 10.1016/j.compscitech.2006.05.003.
[21] 李佳政, “以NX開發被夾持零件之自動刀具路徑規劃系統”, 國立台灣科技大學機械工程系碩士學位論文, 2019.
[22] J. Xu, Z. Geng, Y. Sun, L. Li, “Generating gouge-free tool paths for ball-end cutter CNC milling of cloud of point by projecting guide curves”, Int. J. of Advanced Manufacturing Technology, Vol.102, No.5-8, pp. 1193–1204 , 2019, doi:10.1007/s00170-018-2973-y.
[23] 張宏銘, “使用卷積神經網路開發2.5D零件自動化銑削製程規劃系統”, 國立成功大學機械工程學系碩士論文, 2022.
[24] L.T. Tunc, “Smart tool path generation for 5-axis ball-end milling of sculptured surfaces using process models”, Robotics and Computer-Integrated Manufacturing, Vol.56, pp. 212-221, 2019, doi:10.1016/j.rcim.2018.10.002.
[25] M. A. Dittrich, F. Uhlich, B. Denkena, “Self-optimizing tool path generation for 5-axis machining processes”, CIRP J. of Manufacturing Science and Technology, Vol.24, pp. 49-54, 2019, doi:10.1016/j.cirpj.2018.11.005.
[26] M. Iman, J. A. Miller, K. Rasheed, R. M. Branch, H. R. Arabnia, “EXPANSE: A Deep Continual / Progressive Learning System for Deep Transfer Learning”, 2022 International Conference on Computational Science and Computational Intelligence (CSCI 2022), 2022, doi:10.48550/arXiv.2205.10356.
[27] B. Denkena, M. -A. Dittrich, F. Uhlich, “Augmenting Milling Process Data for Shape Error Prediction”. Procedia CIRP, Vol.57, pp.487-491, 2016, doi:10.1016/j.procir.2016.11.084.
[28] C. Finn, P. Abbeel, S. Levine, “Model-agnostic meta learning for fast adaptation of deep networks”, 34th International Conference on Machine Learning (ICML), PMLR, Vol.70, pp.1126-1135, 2017.
[29] T. Munkhdalai, H. Yu, “Meta networks”, 34th International Conference on Machine Learning (ICML), PMLR, Vol.70, pp. 2554-2563, 2017.
[30] S. N. Venkatesh, P. A. Balaji, M. Elangovan, K. Annamalai, V.Indira, V.Sugumaran, V.S. Mahamuni, “Transfer Learning-Based Condition Monitoring of Single Point Cutting Tool”, Computational Intelligence and Neuroscience, Vol.2022, 2022, doi: 10.1155/2022/3205960.
[31] J. Xie, P. Hu, S. Gao, J. Chen, H. Zhou, J. Yang, “Efficient Cutting Power Modeling of Three-Axis Milling Based on Transfer Learning and Neural Network”, IEEE Access, vol. 10, pp. 64451-64464, 2022, doi: 10.1109/ACCESS.2022.3184023.
[32] A. A. Rusu, N. C. Rabinowitz, G. Desjardins, H. Soyer, J. Kirkpatrick, K. Kavukcuoglu, R. Pascanu, R. Hadsell, “Progressive neural networks”, preprint arXiv:1606.04671, 2016.
[33] L. T. Tunç, O. M. Ozkirimli, E. Budak, “Machining strategy development and parameter selection in 5-axis milling based on process simulations”, Int. J. of Advanced Manufacturing Technology, Vol.85, No.5-8, pp.1483-1500, 2016, doi: 10.1007/s00170-015-8001-6.
[34] 震虎精密科技股份有限公司. “震虎綜合型錄General Catalogue.” https://www.speedtiger.com.tw/document/
[35] 震虎精密科技股份有限公司. “鎢鋼鑽頭型錄Carbide Drills Catalogue.” https://www.speedtiger.com.tw/document/
[36] 陳家銘, “使用動態規劃法進行2.5D銑削刀具路徑及餘量設定之最佳化”, 國立成功大學機械工程學系碩士論文, 2020.
[37] 陳亮頤, “以基因演算法進行2.5D工件銑削刀具路徑規劃及餘量設定之最佳化”, 國立成功大學機械工程學系碩士論文, 2022.
[38] D. M. D’addona, R. Teti, “Genetic algorithm-based optimization of cutting parameters in turning processes”, Procedia CIRP, Vol.7, pp.323-328, 2013, doi: 10.1016/j.procir.2013.05.055.
[39] Y. Lecun, L. Bottou, Y. Bengio, P. Haffner, “Gradient-based learning applied to document recognition”, Proceedings of the IEEE, vol.86, no.11, pp.2278-2324, 1998, doi: 10.1109/5.726791.
[40] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet classification with deep convolutional neural networks”, 25th International Conference on Neural Information Processing Systems (NIPS), pp.1097-1105, 2012.
[41] K. Simonyan, A. Zisserman, “Very Deep Convolutional Networks for Large-Scale Image Recognition”, 3rd International Conference on Learning Representations (ICLR), pp.1-14, 2015.
[42] C. Szegedy et al., “Going deeper with convolutions”, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1-9, 2015, doi: 10.1109/CVPR.2015.7298594.
[43] K. He, X. Zhang, S. Ren, J. Sun, “Deep residual learning for image recognition”, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770-778, 2016, doi: 10.1109/CVPR.2016.90.
[44] N. Ozturk, F. Ozturk, “Neural network based non-standard feature recognition to integrate CAD and CAM”, Computers in Industry, Vol.45, No.2, pp.123-135, 2001, doi: 10.1016/S0166-3615(01)00090-2.
[45] Keras, (n.d.), Available models, Keras Applications, https://keras.io/api/applications/.
[46] G. Huang, Z. Liu, L. Van Der Maaten, K. Q. Weinberger, “Densely Connected Convolutional Networks”, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4700-4708, 2017.
校內:2028-08-11公開