簡易檢索 / 詳目顯示

研究生: 蘇楷倫
Su, Kai-Lun
論文名稱: N型有機薄膜電晶體於光刺激下之仿突觸行為研究
Emulation of Artificial Synaptic Behavior in N-Type Organic Thin-Film Transistors under Light Stimulation
指導教授: 鄭弘隆
Cheng, Horng-Long
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Photonics
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 126
中文關鍵詞: 有機薄膜電晶體十三烷基駢苯衍生物五苯環氧電漿後處理仿神經突觸可見光感知
外文關鍵詞: orangic thin film transistors, PTCDI-C13, Pentacene, oxygen plasma treatment, artificial synapse, UV-vis light sensing
相關次數: 點閱:16下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文研究以有機小分子十三烷基駢苯衍生物(N,N’-Ditridecylperylene-3,4,9,10-tetra-carboxylic diimide, PTCDI-C13) 半導體作為主要主動層,並結合五苯環(Pentacene)奈米薄膜,形成具備 N–P 接面的主動層,以探討 N–P 接面對元件光電特性的影響。此外,亦進一步研究氧電漿後處理對主動層之光電性能的調控效果。
    本論文分為三部分。首先針對主動層薄膜進行特性分析,利用紫外光/可見光吸收光譜、原子力顯微鏡與掃描式開爾文探針顯微鏡探討其光學特性與表面形貌,並藉由 X 光電子能譜與 X 光繞射儀進行元素組成與微結構分析。研究結果顯示,經氧電漿處理後,PTCDI-C13 薄膜的表面粗糙度與表面電位分佈皆明顯降低。此外,在 PTCDI-C13 薄膜上成長一層五苯環薄膜後,主動層在紅光區域的吸收增強,且薄膜的表面粗糙度與表面電位亦隨之提升,此現象可歸因於五苯環分子傾向於優先成長於 PTCDI-C13 晶粒上方。
    第二部分聚焦於元件的基礎電性探討。研究結果顯示,相較於單極性的 PTCDI-C13 元件,具備 N–P 接面的 PTCDI-C13/pentacene 雙層元件展現出更優異的開關比與載子遷移率,這可歸因於 N–P 接面所形成的內建電場,有助於主動層通道中電荷的累積,並在電容特性量測中獲得驗證。然而,經氧電漿處理後的主動層則呈現較差的電性表現,主要源於處理過程在薄膜表面引入缺陷,阻礙載子傳輸;此現象亦由電容量測所顯示的電荷累積能力下降所佐證。
    第三部分著重於探討元件在不同照光環境下的光響應行為,分別以綠光、紅光與紫外光進行照射。結果顯示,元件除展現如光偵測器般的數位響應外,在不同量測模式下亦可成功模擬神經突觸的類比式學習與遺忘過程,使單一元件同時具備光偵測與類神經模擬的應用潛力。

    This study investigates organic thin-film transistors (OTFTs) employing N,N’-ditridecylperylene-3,4,9,10-tetra-carboxylic diimide (PTCDI-C13) as the active layer, with emphasis on the effects of incorporating an island-structured pentacene film and applying oxygen plasma treatment on the optoelectronic properties of the devices. The potential applications of these devices in photodetection and neuromorphic computing are also examined. Experimental results reveal that devices without oxygen plasma treatment exhibit superior electrical performance, with the NP-junction configuration showing the most pronounced enhancements. In contrast, plasma-treated devices display degraded electrical properties; however, under light illumination in three-terminal measurements, they present a higher signal-to-noise ratio, suggesting better suitability for photodetector applications. In two-terminal measurements, untreated devices demonstrate more linear long-term potentiation (LTP) and long-term depression (LTD) compared to their treated counterparts. Time-dependent current analysis further indicates that untreated devices possess lower nonlinearity and asymmetry ratio of LTP/LTD behavior, making them more favorable for emulating synaptic learning and forgetting behaviors in neuromorphic systems. Finally, this study demonstrates that a single device can simultaneously offer both photodetection and neuromorphic simulation capabilities.

    中文摘要 I Extended Abstract III 誌謝 X 目錄 XI 表目錄 XV 圖目錄 XVI 1 第一章 簡介 1 1-1 有機薄膜電晶體 1 1-1-1 有機薄膜電晶體概論 1 1-1-2 有機薄膜電晶體之架構 2 1-1-3 有機薄膜電晶體操作原理 3 1-1-4 有機薄膜電晶體之基本電性參數 3 1-2 神經突觸簡介[11] 6 1-2-1 突觸可塑性 7 1-2-2 突觸指標參數[13-14] 9 1-3 研究動機 10 2 第二章 實驗方法與分析工具 17 2-1 實驗材料 17 2-1-1 玻璃基板 17 2-1-2 丙酮 17 2-1-3 異丙醇 17 2-1-4 有機半導體材料 17 2-1-5 有機高分子修飾層材料 18 2-1-6 電極材料 18 2-2 實驗元件製程 19 2-2-1 玻璃基板製備及清潔 19 2-2-2 物理氣相沉積-熱蒸鍍下閘極 20 2-2-3 高真空電漿蝕刻系統-閘極介電層 20 2-2-4 旋轉塗佈-介電修飾層 20 2-2-5 物理氣相沉積-熱蒸鍍有機小分子半導體材料 21 2-2-6 高真空氧電漿蝕刻-主動層進行表面改質 21 2-2-7 物理氣相沉積-熱蒸鍍電極 22 2-3 實驗製程儀器介紹 22 2-3-1 物理氣相沉積儀 (Physical Vapor Deposition, PVD) 22 2-3-2 旋轉塗佈機 (Spin Coater) 23 2-3-3 高真空電漿蝕刻系統 (Plasma Cleaner System) 23 2-4 實驗量測分析儀器介紹 23 2-4-1 半導體參數分析儀 (Keithley 4200A-SCS) 23 2-4-2 精密阻抗分析儀 (Keysight Agilent-E4980A) 24 2-4-3 紫外光/可見光光譜儀 (Ultraviolet-Visible Spectrometers) 25 2-4-4 原子力顯微鏡 (Atomic Force Microscope, AFM) 26 2-4-5 掃描式開爾文探針顯微鏡 (Scanning Kelvin Probe Microscope, SKPM) 26 2-4-6 X光光電子能能譜儀 (X-Ray Photoelectron Spectroscopy) 27 2-4-7 X光繞射儀 (X-Ray Diffraction, XRD) 27 3 第三章 實驗結果與討論 31 3-1 前言 31 3-2 各元件之薄膜分析 31 3-2-1 原子力顯微鏡分析 32 3-2-2 掃描式開爾文探針顯微鏡分析 32 3-2-3 紫外/可見光光譜分析 33 3-2-4 X光光電子能譜分析 33 3-2-5 X光繞射光譜分析 34 3-3 有機薄膜電晶體之基礎電性分析 35 3-3-1 電容分析 35 3-3-2 電晶體基礎電性分析 36 3-4 光響應分析 38 3-4-1 電晶體操作模式之光響應 38 3-4-2 兩端操作模式之光響應 40 3-5 類神經態模擬分析 42 3-5-1 突觸指標參數分析 42 3-5-2 類神經型態模擬[29] 43 3-6 光突觸下能耗分析 45 4 第四章 結論與未來展望 96 4-1 結論 96 4-2 未來展望 97 參考文獻 99

    [1] C. K. Chiang, C. R. Fincher, Jr., Y. W. Park, and A. J. Heeger, H. Shirakawa, W. J. Louis, S. C. Gau, and A. G. MacDiarmid, Electrical condutivity in doped polyacetylene, Physical Review Letters, 1977, 39, 1098.
    [2] A. Tsumura, H. Koezuka, T. Ando, Macromolecular electronic device: field‐effect transistor with a polythiophene thin film, Applied Physics Letters, 1986, 49, 1210-1212.
    [3] S. Guenes, H. Neugebauer, N. S. Sariciftci, Conjugated polymer-based organic solar cells, Chemical Reviews, 2007, 107, 1324-1338.
    [4] N. Yeh, P. Yeh, Organic solar cell: Their developments and potentials, Renewable and Sustainable Energy Reviews, 2013, 21, 421-431.
    [5] H. Uoyama, K. Goushi, K. Shizu, H. Nomura, C. Adachi, Highly efficient organic light-emitting diodes from delayed fluorescence, Nature, 2012, 492, 234.
    [6] W. Bruetting, S. Berleb, A. G. Mueckl, Device physics of organic light-emitting diodes based on molecular materials, Organic Electronics, 2001, 2, 1-36.
    [7] X. Guo, L. Han, X. Hou, Insights into the device structure, processing and material design for an organic thin-film transistor towards functional circuit integration, Materials Chemistry Frontiers, 2021, 5, 6760-6778.
    [8] J. Kang, N. Shin, D. Y. Jang, V. M. Prabhu, and D. Y. Yoon, Structure and properties of small molecule−polymer blend semiconductors for organic thin film transistors, Journal of the American Chemical Society, 2008, 130, 12273-12275.
    [9] H. Sirringhaus, P. J. Brown, R. H. Friend, M. M. Nielsen, K. Bechgaard, B. M. W. Langeveld-Voss, A. J. H. Spiering, R. A. J. Janssen, E. W. Meijer, P. Herwig, D. M. de Leeuw, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature, 1999, 401, 685-688.
    [10] K. Terada, K. Nishiyama, K. Hatanaka, Comparison of MOSFET-threshold-voltage extraction methods, Solid-State Electronics, 2001, 45, 35-40.
    [11] C. Nicholson, Diffusion and related transport mechanisms in brain tissue, Reports on Progress in Physics, 2001, 64, 815-884.
    [12] Y. Y. Xiao, B. Jiang, Z. H. Zhang, S. W. Ke, Y. Y. Jin, X. Wen, C. Ye, A review of memristor:material and structure design, device performance applications and prospects, Science and Technology of Advanced Materials, 2023, 24, 2162323.
    [13] S. Bhise, Y. S. Song, D. H. Kim, Q. G. Chen, H. Y. Yang, A. Nikam, B. J. Moon, S. Bae, S. Park, S. K. Lee, H. Lee, C. C. Chueh, T. W. Kim, Thermal annealing-driven modulation of charge trapping and synaptic plasticity in a sol-gel AlOx-based floating gate transistor, ACS Applied Materials & Interfaces, 2025, 17, 17189-17201.
    [14] Y. W. Wang, C. L. Hsieh, C. J. Wang, K. Agrahari, L. I. Huang, F. C. Wu, Z. M. Chen, W. C. Lai, W. Y. Chou, H. L. Cheng, Bistable ZTO-based neuromorphic memtransistors enabling mode-tunable synaptic diversity and their applications in neuromorphic computing, Applied Materials Today, 2025, 45, 102836.
    [15] Q. Zhao, X. M. Luo, H. L. Wu, B. He, Q. W. Wang, T. F. Zhang, Z. M. Li, P. Liu, C. B. Zhao, J. B. Wang, Q. F. Liu, G. Q. Yu, J. W. Wei, Efficient charge-to-orbit current conversion for orbital torque based artificial neurons and synapses, Advanced Electronic Materials, 2025, 11, 2400721.
    [16] S. Dai, Y. Zhao, Y. Wang, J. Zhang, L. Fang, S. Jin, Y. Shao, J. Huang, Recent advances in transistor-based artificial synapses, Advanced Functional Materials, 2019, 29, 1903700.
    [17] A. Ali, Y. W. Chiang, R. M. Santos, X-ray diffraction techniques for mineral characterization:A review for engineers of the fundamentals, applications, and research directions, Minerals, 2022, 12, 205.
    [18] A. K. Panda, L.Sahoo, R. Chakravarty, N. C. Nayak, R. K. Parida, B. N. Parida, R. Dutta, Transprt and semiconducting behavior of Ca2BiNbO6 new inorganic double perovskite, Applied Physics A, 2021, 127, 950.
    [19] R. J. Wu, The study of organic transistors and organic-inorganic hybrid perovskite-based photoconductors for photosensing and their applications, Ph.D Thesis, National Cheng Kung University, Taiwan, 2023, 89-98.
    [20] R. S. Nobuyasu, Z. J. Ren, G. C. Griffiths, A. S. Batsanov, P. Data, S. K. Yan, A. P. Monkman, M. R. Bryce, F. B. Dias, Rational design of TADF polymers using a donor-acceptor monomer with enhanced TADF efficiency induced by the energy alignment of charge transfer and local triplet excited states, Advanced Optical Materials, 2016, 4, 597-607.
    [21] W. Y. Chou, S. K. Peng, F. C. Wu, H. S. Sheu, Y. F. Wang, P. K. Huang, H. L. Cheng, Memory characteristics of organic field-effect memory transistors modulated by nano-p–n junctions, Journal of Materials Chemistry C, 2020, 8, 7501-7508.
    [22] C. Wei, J. Tang, W. B. Huang, Bending of PN junction in flexoelectric semiconductors, Engineer Research Express, 2023, 5, 035056.
    [23] Y. W. Wang, G. Y. Tseng, L. Y. Chiu, B. R. Lin, Y. Y. Lin, T. W. Haung, W. Y. Chou, L. Horng, H. L. Cheng, Highly energy-efficient and air-stable organic transistors by an ultrathin hybrid dielectric with large internal voltage generation, Journal of Materials Chemistry C, 2014, 2, 7752-7760.
    [24] P. Chakraborti, G. L. Zhao, C. Zhou, D. D. L. Chung, Unprecedented sensing of interlayer defects in three-dimensionally printed polymer by capacitance measurement, Smart Materials and Structures, 2018, 27, 115012.
    [25] F. Yakuphanoglu, B. Gunduz, Effects of channel widths, thicknesses of active layer on the electrical and photosensing properties of the 6,13-bis(triisopropylsilylethynyl) pentacene transistors by thermal evaporation method:Comparison study, Synthetic Metals, 2012,162, 1210-1239.
    [26] A. B. Mishra, R. Thamankar, Combined optical and electrical control of a low-power consuming (∼fJ) two-terminal organic artificial synapse for associative learning and neuromorphic applications, Nanoscale, 2024, 16, 18597-18608.
    [27] W. Huang, P. J. Hang, X. W. Xia, B. Li, B. Li, C. X. Kan, H. X. Zhang, C. Zhu, C. H. Wang, X. D. Zhu, D. R. Yang, X. D. Pi, X. G. Yu, X. A. Li, Two-terminal self-rectifying optoelectronic synaptic devices with largest-dynamic-range updates, Applies Materials Today, 2023, 30, 101728.
    [28] B. Mukherjee, Large photoresponse from a small molecule: Application in photodetector and pseudo-transistor, Optik, 2015, 126, 1258-1262.
    [29] T. P. Xiao, C. H. Bennett, B. Feinberg, M. J. Marinella, S. Agarwal, CrossSim: accuracy simulation of analog in-memory computing [software]. https://github.com/sandialabs/cross-sim.
    [30] C. Zhang, S. Y. Wang, X. L. Zhao, Y. H. Yang, Y. H. Tong, M. X. Zhang, Q. X. Tang, Y. C. Liu, Sub-femtojoule-energy-consumption conformable synaptic transistors based on organic single-crystalline nanoribbons, Advanced Functional Materials, 2021, 31, 2007894.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE