簡易檢索 / 詳目顯示

研究生: 賴昱穎
Lai, Yu-Ying
論文名稱: 建立奈米拉力計與分子模型解析單分子層與半導體高分子薄膜之介面作用力
Building a nano-peeling force gauge and the corresponding molecular model to analyze the intermolecular interactions between self-assembled monolayers and semiconducting polymer thin films
指導教授: 徐邦昱
Hsu, Bang-Yu
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學及工程學系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 75
中文關鍵詞: 聚(3-己烷噻吩)分子間作用力自組裝單分子層拉力計
外文關鍵詞: Poly(3-hexylthiophene), Intermolecular interactions, Self-assembled monolayers, Peeling gauge
相關次數: 點閱:69下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體高分子因其重量輕、可撓,並兼顧導電性的特殊電子結構,而被廣泛應用於軟性電子裝置,如有機薄膜電晶體、有機太陽能電池、有機發光二極體等。因高分子本身可撓的機械特性、易被製程與環境改變成膜形貌,而多變的形貌讓電子結構複雜化,進而降低元件效能。為了增加高分子電子元件的效能,需要提高薄膜有序性;透過自組裝單分子層修飾基板表面的介面作用力,不但可控制高分子成膜形貌,更能在奈米尺度有序化微觀分子堆疊,同時增進高分子薄膜有序性與電子結構效能。若能精確分析有機薄膜電晶體介面間的分子作用力,就能調控半導體高分子之微觀分子間作用力與其形貌相依的電子結構,並在分子尺度系統性關聯製程參數,進而控制軟性電晶體效能。

      為了分析基板與高分子間的介面作用力,本研究自行架設奈米拉力計,以90°剝離模組進行聚(3-己烷噻吩)有序薄膜的剝離,將高分子層剝離時的力度連繫分子間作用力,建立分析半導體高分子薄膜介面間分子作用力的新穎方法學。實驗先設計相同鏈高、不同碳原子數的分岔自組裝單分子層(branch self assembled monolayers),藉由巨觀的原子力顯微鏡與微觀的極化拉曼散射頻譜,對應上述的高分子薄膜拉力測試,得到形貌相依的拉力值。比較使用線形自組裝單分子成長的有序薄膜,與分岔自組裝單分子層所沉積的薄膜,兩者在薄膜底層確實形成巨觀有序相,但兩者分別有序與無序的微觀分子堆疊,確立分子層級作用力能有效控制巨觀有序性,且此介面操作需精確到個位數的原子。

      本研究選用聚(3-己烷噻吩)為分析對象,從熱力學的角度出發,提出分子有序排列的模型,相對定量自組裝單分子極性官能基與聚(3-己烷噻吩)間所形成之偶極矩作用力,並以此模型預測分岔自組裝單分子層破壞主鏈準直排列驅動力,得出控制分子有序排列的作用力範圍,為有機材料有序性與電子元件效能的研究提供重要資訊。

    If the molecular interaction between the organic thin film transistor (OTFT) interface can be accurately analyzed, the electronic structure of microscopic intermolecular interaction of semiconductor polymer and its morphology can be tuned up. In addition, flexible transistor performance can be further controlled. In this work, a nano-peeling force gauge was successfully built, and peeled the ordered poly(3-hexylthiophene) (P3HT) thin films by a 90° peeling module. The strength of peeling is directly related to the intermolecular interactions. Using atomic force microscope (AFM) and polarized Raman scattering spectrum, ordered morphologies with disordered molecular packing was revealed. We designed a series of self-assembled monolayers (SAM) with linear and branded end groups (branched-SAM) to create different intermolecular interaction. Despite the same chain length, the molecular structure of SAM with a little deviated carbon numbers demonstrated dramatically different packing order. The interfacial forces only increased with the ordered, fabric morphologies though both high and low molecular orders were present on the linear and branched-SAM. Consequently, we surprisingly found that intermolecular interactions can effectively control macroscopic order, but molecular order requires the molecular controls with the precision in atomic level.

    中文摘要 i 目錄 ix 表目錄 xi 圖目錄 xii 第一章、緒論 1 1.1 研究動機 1 第二章、文獻回顧 2 2.1 導電高分子 (Conducting Polymers) 2 2.2 自組裝單分子層 (Self-Assembled Monolayer, SAM) 8 2.3 有機薄膜電晶體 (Organic Thin Film Transistor, OTFT) 10 第三章、實驗材料與儀器 16 3.1 實驗藥品與材料 16 3.2 實驗裝置 18 3.3 量測儀器與原理 20 第四章、實驗流程 35 4.1 拉力測試試片製備 35 4.2 拉力測試參考試片製備 37 4.3 自組裝單分子層合成與沉積 37 第五章、實驗模型與原理 39 5.1 蘭納-瓊斯位能(Lennard-Jones Potentials) 41 5.2 弗洛里-哈金斯溶液理論 (Flory-Huggins Solution Theory) 46 第六章、 實驗結果與討論 51 6.1 自組裝單分子層沉積 51 6.2 導電高分子聚(3-己烷噻吩)沉積與拉力測試 54 第七章、 結論 72 第八章、 參考文獻 73

    1. Bahry, T. Extension of radiolytic procedure to the preparation of conducting polymers in organic solvents: synthesis, characterization and applications. Université Paris Saclay (COmUE), 2019.
    2. Le, T.-H.; Kim, Y.; Yoon, H., Electrical and electrochemical properties of conducting polymers. Polymers 2017, 9 (4), 150.
    3. Coppo, P.; Cupertino, D. C.; Yeates, S. G.; Turner, M. L., Synthetic routes to solution-processable polycyclopentadithiophenes. Macromolecules 2003, 36 (8), 2705-2711.
    4. Radhakrishnan, S.; Parthasarathi, R.; Subramanian, V.; Somanathan, N., Quantum chemical studies on polythiophenes containing heterocyclic substituents: Effect of structure on the band gap. The Journal of chemical physics 2005, 123 (16), 164905.
    5. Elsenbaumer, R.; Jen, K. Y.; Oboodi, R., Processible and environmentally stable conducting polymers. Synthetic Metals 1986, 15 (2-3), 169-174.
    6. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D., Regioregular, head-to-tail coupled poly (3-alkylthiophenes) made easy by the GRIM method: Investigation of the reaction and the origin of regioselectivity. Macromolecules 2001, 34 (13), 4324-4333.
    7. Rivnay, J.; Mannsfeld, S. C.; Miller, C. E.; Salleo, A.; Toney, M. F., Quantitative determination of organic semiconductor microstructure from the molecular to device scale. Chemical reviews 2012, 112 (10), 5488-5519.
    8. Müller‐Buschbaum, P., The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Advanced materials 2014, 26 (46), 7692-7709.
    9. Xiao, Y.; Lu, X., Morphology of organic photovoltaic non-fullerene acceptors investigated by grazing incidence X-ray scattering techniques. Materials Today Nano 2019, 5, 100030.
    10. Watcharinyanon, S. Structure of Self-Assembled Monolayers on Gold Studied by NEXAFS and Photoelectron Spectroscopy. Karlstads universitet, 2008.
    11. Kim, D. H.; Jang, Y.; Park, Y. D.; Cho, K., Surface-induced conformational changes in poly (3-hexylthiophene) monolayer films. Langmuir 2005, 21 (8), 3203-3206.
    12. Tavasli, A.; Gurunlu, B.; Gunturkun, D.; Isci, R.; Faraji, S., A Review on Solution Processed Organic Phototransistors and Their Recent Developments. Electronics 2022, 11 (3), 316.
    13. Facchetti, A., Semiconductors for organic transistors. materials today 2007, 10 (3), 28-37.
    14. Neamen, D. A., Semiconductor physics and devices: basic principles. McGraw hill: 2003.
    15. Zisman, W. A., Relation of the equilibrium contact angle to liquid and solid constitution. ACS Publications: 1964.
    16. Owens, D. K.; Wendt, R., Estimation of the surface free energy of polymers. Journal of applied polymer science 1969, 13 (8), 1741-1747.
    17. Thiessen, D. B., Surface tension measurement. CRC Handbook of Chemistry and Physics 1999.
    18. Girifalco, L.; Good, R. J., A theory for the estimation of surface and interfacial energies. I. Derivation and application to interfacial tension. The Journal of Physical Chemistry 1957, 61 (7), 904-909.
    19. Fowkes, F. M., Attractive forces at interfaces. Industrial & Engineering Chemistry 1964, 56 (12), 40-52.
    20. Jańczuk, B.; Białlopiotrowicz, T., Surface free-energy components of liquids and low energy solids and contact angles. Journal of Colloid and Interface Science 1989, 127 (1), 189-204.
    21. Wu, S. In Calculation of interfacial tension in polymer systems, Journal of Polymer Science Part C: Polymer Symposia, Wiley Online Library: 1971; pp 19-30.
    22. Selvakumar, N.; Barshilia, H. C.; Rajam, K., Effect of substrate roughness on the apparent surface free energy of sputter deposited superhydrophobic polytetrafluoroethylene coatings: A comparison of experimental data with different theoretical models. Journal of Applied Physics 2010, 108 (1), 013505.
    23. Stylianou, A.; Lekka, M.; Stylianopoulos, T., AFM assessing of nanomechanical fingerprints for cancer early diagnosis and classification: from single cell to tissue level. Nanoscale 2018, 10 (45), 20930-20945.
    24. Bruker Corporation SPM Training Guide > Atomic Force Microscopy (AFM). http://nanophys.kth.se/nanophys/facilities/nfl/afm/icon/bruker-help/Content/SPM%20Training%20Guide/Atomic%20Force%20Microscopy%20(AFM)/Atomic%20Force%20Microscopy%20(AFM).htm.
    25. Asmatulu, R.; Khan, W., Chapter 13-Characterization of electrospun nanofibers. Elsevier: Amsterdam: 2019; pp 257-281.
    26. Edinburgh Instruments What is Raman Spectroscopy? https://www.edinst.com/blog/what-is-raman-spectroscopy/.
    27. Zobeiri, H.; Wang, R.; Deng, C.; Zhang, Q.; Wang, X., Polarized Raman of nanoscale two-dimensional materials: combined optical and structural effects. The Journal of Physical Chemistry C 2019, 123 (37), 23236-23245.
    28. DeVries, K.; Adams, D. O., Mechanical testing of adhesive joints. Chapter 2002, 6, 193-234.
    29. 林廷翰. 評估聚(3-己烷噻吩)在不同鏈長自組裝單分子層上準直排列的驅動力. 國立成功大學, 2020.
    30. Zha, M.; Wang, N.; Zhang, C.; Wang, Z., Inferring Single-Cell 3D Chromosomal Structures Based on the Lennard-Jones Potential. International Journal of Molecular Sciences 2021, 22 (11), 5914.
    31. Lorentz, H. A., Ueber die Anwendung des Satzes vom Virial in der kinetischen Theorie der Gase. Annalen der physik 1881, 248 (1), 127-136.
    32. Flory, P. J., Thermodynamics of high polymer solutions. The Journal of chemical physics 1942, 10 (1), 51-61.
    33. Huggins, M. L., Solutions of long chain compounds. The Journal of chemical physics 1941, 9 (5), 440-440.
    34. Thomas, E. L., Lattice Models of Solutions 2007.
    35. 錢仕賢. 探討噻吩與聯噻吩架構共軛高分子之有序形貌排列:聚(3-己烷噻吩) 及Poly(3,6-dialkylthieno[3,2-b]thiophene-co-bithiophene)國立成功大學, 2019.

    下載圖示 校內:立即公開
    校外:立即公開
    QR CODE